
Performance Study of Improved BBR Congestion
Control Algorithm using QUIC in Wireless LAN

Mengjie Zuo
School of Information Engineering
Wuhan University of Technology

Wuhan, China
zmj@whut.edu.cn

Yi Zhong
School of Information Engineering
Wuhan University of Technology

Wuhan, China
zhongyi@whut.edu.cn

Haoying Wu
School of Information Engineering
Wuhan University of Technology

Wuhan, China
why_dd@whut.edu.cn

Jiazheng Wang
IT Department

Liuzhou Wuling Automobile Industry
Co., Ltd

Liuzhou, China
wangjiazheng@wuling.com.cn

Yi Han*
School of Information Engineering
Wuhan University of Technology

Wuhan, China
hanyi@whut.edu.cn

Abstract— Congestion control enables network nodes to
adopt certain approaches to avoid network congestion as much
as possible, and respond when network congestion occurs. BBR
is a transmission rate-based congestion control algorithm pro-
posed by Google for Chromium QUIC and Linux kernel deploy-
ment. The new transmission protocol QUIC proposed by Google
has a better congestion control mechanism than TCP. Based on
the existing BBR congestion control algorithm, this paper pro-
poses the IBCCA congestion control algorithm and evaluates the
performance of the IBCCA, CUBIC, and BBR algorithms under
the QUIC protocol in wireless LAN. When the network traffic
burst flow is small or the burst duration is short, IBCCA
achieves higher network goodput and lower transmission
round-trip time. In the experiment of multi-stream transmission,
the IBCCA algorithm achieves higher fairness while the good-
put and RTT are at the same level. The BBR algorithm achieves
a smaller RTT, and the goodput of the IBCCA algorithm is not
much different from the CUBIC algorithm.

Keywords—congestion control, burst flow, multi-stream, fair-
ness

I. INTRODUCTION
The QUIC (Quick UDP Internet connection) protocol was

first proposed by Google in 2013 as an application layer data
transmission protocol used to replace TCP [1]. The QUIC pro-
tocol is based on the UDP protocol and provides reliable, or-
derly, safe, and fast transmission services. Although QUIC
uses the UDP infrastructure, it does not rely on the character-
istics of UDP. At the same time, QUIC must establish a con-
nection with the other peer before transmission, A handshake
is necessary for the data to be transmitted in advance. QUIC
provides connection-oriented end-to-end reliable transmission
[2].

For a multi-user network transmission scenario in QUIC,
multiple users may request connections simultaneously and
share the same bottleneck link, as shown in Fig. 1. There are
many concurrent senders in a multi-user network, and the net-
work transmission delay is variable. What’s more, these con-
current streams will compete for the limited network resource,
and thus resulting in network congestion during the transmis-
sion. The packets will eventually line up in the buffer queue,
increasing queuing delay and packet loss possibility. QUIC
adopts a burst traffic mechanism for web browsing data to op-
timize the user experience in a short period. The occurrence of
such burst traffic will increase the burden of network data

transmission, as well as increase the risk of network conges-
tion or make the network more congested, which eventually
reduces the network transmission throughput.

...

QUIC Receiver1QUIC Sender1

QUIC Sender2

QUIC Sendern

QUIC Receiver2

QUIC Receivern

...

Link

Fig. 1. Dumbbell network topology based on QUIC protocol

To effectively reduce the occurrence of network conges-
tion and stabilize the data flow, many congestion control al-
gorithms have been proposed to control the packet transmis-
sion rate. For example, NewReno[3], Vegas[4], BIC[5], CU-
BIC[6], BBR[7], and many other congestion control algo-
rithms. The current widely used congestion control algorithm
is undoubtedly Google’s BBR algorithm[7], which uses dif-
ferent methods to try to estimate bandwidth and RTT, and a
feedback-driven autonomous adjustment mechanism to keep
the initial value of the congestion window consistent with the
network capacity.

Inspired by this, this paper proposes the improved BBR
congestion control algorithm (IBCCA) and analyses its per-
formance using the QUIC under various network transmission
scenarios. In multi-stream and burst traffic scenarios, the IB-
CCA algorithm is proved to achieve higher fairness, while
maintaining a high network performance level.

The rest of this paper is organized as follows. Section 2
introduces related work, and Section 3 describes the BBR con-
gestion control algorithm and the proposed IBCCA algorithm.
The algorithm evaluation and experimental results are pre-
sented in Section 4. Finally, Section 5 concludes.

II. RELATED WORKS
QUIC transmission occurs faster than TCP transmission,

which can be attributed to high throughput and effective band-
width usage. QUIC can also use data packet adjustment to es-
timate the available bandwidth of the link by tracking the in-
terval between the data packets at the receiving end and the
sending end [8].

QUIC is generally more stable than TCP. Even though
QUIC uses the same congestion control algorithm as TCP,

510

2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

978-1-6654-6667-7/21/$31.00 ©2021 IEEE
DOI 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00085

when competing with TCP streams, QUIC still almost always
uses more bandwidth than its reasonable bandwidth [10].
However, in terms of user experience of QUIC protocol net-
work transmission, the first study by Rüth et al. [11] found that
in slower networks, actual users can usually perceive small
differences in technical performance. Compared to TCP, peo-
ple seem to prefer QUIC. However, if the network speed in-
creases, the difficulty of finding the difference will increase.
Minh et al. [12] studied the impact of QUIC and HTTP/2 on
scalable video streaming. Experimental results show that the
benefits of QUIC are significantly different from our proposed
method in the case of packet loss and retransmission. Com-
pared to HTTP/2, it improves the average video quality and
provides smoother adaptive behavior. Arisu et al. [13] meas-
ured the streaming performance of QUIC on wireless and cel-
lular networks, and found that QUIC leads to faster media
streaming start, better streaming, and seeking experience, es-
pecially in the case of high network congestion. And it has
better performance than TCP when viewers move and switch
between wireless networks.

QUIC implements many TCP congestion control algo-
rithms. Brakmo and Peterson’s Vegas [4] is the first imple-
mentation to use the delay as a congestion signal. The CUBIC
algorithm of the congestion control algorithm [6] The increase
in the congestion window depends only on the packet loss rate.
CUBIC greatly increases the window size, increases the queue
and real-time transmission time, and causes buffer expansion
or low throughput. Different from the CUBIC protocol, a dis-
tributed congestion control protocol BBR proposed by Google
[7] attempts to achieve the best operating point by keeping
CWND (Congestion Window) equal to BDP (Bandwidth De-
lay Product) by periodically measuring network capacity [14].
BBR is deployed on Google's B4backbone and compared with
CUBIC, the throughput is improved by several orders of mag-
nitude. BBR runs purely on the sender and does not require
changes to the protocol, receiver, or network to make it incre-
mentally deployable [7].

In recent years, many researchers have studied the BBR
algorithm under the QUIC protocol. Kim et al. [15] proposed
a bottleneck queue establishment suppression method, which
prevents the establishment of unnecessary persistent queues
by limiting the congestion window in the ProbeBW phase-de-
tection bandwidth interval. Compared with the original BBR,
it can significantly improve the relationship between different
RTT flows. Fairness. Ware et al. [16] found that the flight limit
of BBR is the core of BBR's behavior on the Internet. When
BBR competes with other traffic (BBR, CUBIC, or Reno, etc.),
it sends data packets at a rate determined entirely by its upper
limit of flight. Even if a lot of loss-based traffic reaches the
network, BBR will not reduce its sending rate. This is the
cause of reports arguing that BBR is ‘unfair’ to legacy TCPs.
Zhang et al. [17] aimed at the problem of high packet loss rate
and large transmission delay caused by the BBR congestion
control algorithm when BBR streams compete for bandwidth
resources and proposed a delay response BBR algorithm for
real-time video transmission. The results show that, compared
with QUIC-BBR and WebRTC-BBR, Delay-BBR can
achieve lower transmission delay and lower packet loss rate.
In addition, compared with the benchmark algorithm, the
packet scheduling algorithm working in conjunction with the
rate control algorithm achieves a lower frame transmission de-
lay.

III. PROPOSED ALGORITHM

A. BBR Congestion Control Algorithm
The BBR algorithm updates the estimated bottleneck

bandwidth (BtlBw) of the available throughput over the net-
work and the estimated baseline round trip time propagation
time (Rtprop) to calculate the transmission rate estimated.

BBR has defined the states in different congestion phases:
StartUp, Drain, ProbeBW, and ProbeRTT[16]. Their transi-
tion process is shown in Fig. 2.

Start Up Drain ProbeBW

ProbeRTT

Every 10
seconds

8 different gains in RTT

4 MSS

200ms &
1round

Inflight<=BDP

The growth of
bandwidth

less than 25%

High gain

Bandwidth not full

for three times
Reset the
minimum

RTT

Reciprocal of
the high gain

Fig. 2. BBR algorithm congestion control mechanism

When the connection starts, it enters the StartUp state. In the
StartUp phase uses high gain to double its transmission rate to
detect the maximum available bandwidth, and calculates the
pacing rate and congestion window size (cwnd). When it is
estimated that the transmission sending rate increment is less
than 25% for 3 times consecutively, it is considered to be close
to the maximum available bandwidth. The estimated band-
width stops increasing, and the BBR algorithm enters the
Drain state. The Drain state uses the reciprocal of the high gain
in the StartUp state to clear the excess queue accumulated dur-
ing the startup phase. When the data in flight is too large and
the pipeline is still overloaded, the Drain state is maintained.
When the data packet in flight is less than BDP, the status
changes to ProbeBW. The ProbeBW state is stable. In this
state, the sending rate is controlled by different gains [1.25,
0.75, 1, 1, 1, 1, 1, 1, 1, 1] in the 8 RTTs. Different from the
behaviors in the StartUp state, it uses high gain to expand pac-
ing rate and cwnd. The gain of 1.25 is to detect the bandwidth
limit. If there is additional bandwidth available, the sender will
increase the sending rate to occupy it. If a small RTT is not
observed within 10 seconds, it is determined that the link
seems to be in a congested state, and the state is set to Prob-
eRTT. During ProbeRTT, BBR limits its in-flight data volume
to 4 data packets to allow the intermediate router to exhaust
the occupied buffer, and ensure that its data packets do not
occupy the queue in the network. It measures the RTT of these
data packets for at least 200 milliseconds or a regular round
trip time of a data packet, then resets the minimum RTT. If
ProbeRTT times out and BtlBw is full, BBR returns to
ProbeBW state. If ProbeRTT times out and BtlBw is not full,
BBR returns to StartUp state.

In a multi-user network transmission scenario, multiple
BBR streams use the maximum estimated bandwidth sampled
by real-time transmission time, which can easily cause the to-
tal transmission rate to exceed the bottleneck capacity, and
data packets will be cached in the router. Similarly, when a
burst of traffic arrives, the network transmission queue is
filled. Both of these conditions will lead to an increase in
transmission delay. A smaller RTT is difficult to reappear
within 10 seconds, and the detection test state that lasts for up
to 200 milliseconds may not be enough for the router cache
queue to be emptied[17]. This not only deviates from the max-
imum estimated bandwidth detected in the previous period but
sometimes causes serious congestion. It can only be restarted

511

by entering the StartUp state. In this case, it will cause unnec-
essary delays. Moreover, when the burst traffic is more ag-
gressive, BBR does not take the initiative to occupy the queue
buffer. The RTT detected during the detection period is low,
and the bandwidth estimation tends to be more conservative.
Thus, the bandwidth utilization rate is not optimized, resulting
in a low convergence speed of the algorithm. If the ProbeRTT
state can empty the queue, no measures have been taken to
ensure fairness during the process of multiple BBR streams
from the ProbeRTT state to the ProbeBW state, so there is no
guarantee that the BBR stream after the restoration will remain
at an optimal control point to deliver high throughput.

B. Improved BBR Congestion Control Algorithm
Considering the above issues, this paper proposes the im-

proved BBR congestion control algorithm (IBCCA) presented
in Algorithm 1.

Algorithm 1 Improved BBR Congestion Control Algorithm

Input: ݕ݈ܽ݁݀ ,݀݁݇ܿ݋݈ܤ௜, I, ݐ݊ݑ݋ܥܤ௜.
Output: ܴܽ݁ݐ௜ , ܴܶ ௜ܶ.
Define:
I: the set of the total number of packets; ݀݁݁ݐܽݎ: the sum of the differences between the Rtprop val-
ues in three tests; ݀݁݇ܿ݋݈ܤ: the congestion signal; ݈݀݁ܽݕ௜: the delay of the i-th packet; ܴܶ ௜ܶ: the round-trip time of the i-th packet;
 1: Initialize ݅ ← 0, ݆ ← ݅ + ௜݊݅ݐ ,1 ← ݀݁݇ܿ݋݈ܤ ,0 ← 0
 2: for ݅ ∈ ݆ ,ܫ ∈ do ܫ
 3: Calculate the value of ݀݁݁ݐܽݎ = ∑ ௞ݕ݈ܽ݁݀) −௜ାଷ௞ୀ௜ ݈݀݁ܽݕ௞ାଵ)
 4: if ݀݁0 =< ݁ݐܽݎ or 0 = ݀݁݇ܿ݋݈ܤ and in

ProbeBW state then
 5: keep in ProbeBW state
 6: if ݈݀݁ܽݕ௜ − ௜ାଵݕ݈ܽ݁݀ < 0 then
 7: the detection bandwidth gain ∈ [0.75, 1, 1, 1, 1,

1, 1, 1.25];
 8: end if
 9: elseif ݀݁0 > ݁ݐܽݎ and ݀݁݇ܿ݋݈ܤ = i and in

ProbeBW state then
10: change to ProbeRTT state
11: elseif ݀݁0 > ݁ݐܽݎ and ݀݁݇ܿ݋݈ܤ = i and in Prob-

eRTT state then
12: Calculate the value of ݅ݐ ௝݊ = ݅ݐ ௝݊ିଵ ൬ ௜ିଵ൰஻஼௢௨௡௧೔ݕ௜݈݀݁ܽݕ݈ܽ݁݀ , ݆ = ݅ + 1

13: increase the time in ProbeRTT state by ݅ݐ ௝݊ mil-
liseconds

14: end if
15: calculate ݃ݐݑ݌݀݋݋;
16: end for
17: return ݃ݐݑ݌݀݋݋, ܴܶ ௜ܶ

If there are no extra data packets to be processed at the
transport layer, or the calculated network delay does not show
a significant increase, even if the RTT does not decrease
within 10 seconds, the algorithm remains in the ProbeBW
state without the need to decrease its transmission rate. In this
way, the stream will be able to compete with the aggressive
stream during the transmission process. In the ProbeBW state,
considering the situation where the network cannot deal with

the network congestion due to the sudden traffic burst, the IB-
CCA transits from ProbeBW to the ProbeRTT when it meets
the following two requirements: 1) the transmission layer
sends a congestion signal because it cannot process the high
volume of data, and 2) the network delay is showing an in-
creasing trend, indicated by the negative sum of the differ-
ences between the Rtprop values in three tests. This algorithm
can adapt the state to the possible congestion in time when
there is burst traffic, and avoid high-speed transmission when
the queue is full. IBCCA considers both network transmission
performance optimization and fairness among multiple
streams. When the network suffers from the transmission traf-
fic congestion caused by burst or multi-user concurrency traf-
fic, the increased time maintained in the ProbeRTT state can
allow more time to empty the router buffer queue, to avoid
transmission delay increases. This reduces the sending rate,
avoids overestimation of BDP, and reduces packet loss and
retransmission. Reducing the time between ProbeRTT states
will help BBR restore its original stable state when it encoun-
ters a burst [18]. This is implemented in IBCCA by enabling
the transition to ProbeRTT state in advance to heavy conges-
tion.

According to the design of IBCCA, line 3 to line 8 of Al-
gorithm 1 are to increase the time maintained in the ProbeBW
state to better compete with other streams. Line 9 to line 10
are to adapt the state in congestion earlier when there is burst
traffic. Line 11 to line 14 allows more time to empty the
router’s buffer queue when congestion occurs.

In the multi-user scenario, define the set ܵ = {1,2, ⋯ , ,{ܮ
where L is the total number of streams. The measured through-
puts of multiple flows [ݐଵ, ,ଶݐ ⋯ , -௅] are used to calculate fairݐ
ness using Jain’s index[19], which is often recognized as a
fairness metric or the measurement in network engineering to
determine whether users or applications have fair sharing of
system resources. The calculation is described in (1).

2

1
1 2 2

1

()
(, , ,) ,

L

ll
L L

ll

t
Jain t t t l S

L t
,)

(
L,)

(

L
 (1)

In the single flow scenario, define the set ܫ = {1,2, ⋯ , ܰ}, ݅ ∈ ௜ݐ݊ݑ݋ܥܤ .where N the total number of packets ,ܫ is the
number of times that the i-th packet encounters congestion,
and ݈݀݁ܽݕ௜ represents the delay of the i-th packet. When the
network suffers from congestion caused by burst traffic or
multi-user traffic exceeding the network transmission bottle-
neck, ݈݀݁ܽݕ௜ will increase compared with ݈݀݁ܽݕ௜ିଵ. The in-
crease of ݐ݊ݑ݋ܥܤ௜ will enlarge the impact of the ratio ݈݀݁ܽݕ௜/݈݀݁ܽݕ௜ିଵ, and thus ݅ݐ ௝݊ can be further increased ac-
cording to (2). Whenever congestion occurs, the resulting
packet loss will lead to retransmission, which will crowd out
the original bandwidth and lead to more serious congestion.
Therefore, every time a congestion signal accumulates, the
time in ProbeRTT increases exponentially. Extending the time
that the congestion control algorithm stays in the ProbeRTT
state will help the queue to empty. When the calculated wait-
ing time exceeds the longest waiting time originally set by
BBR, it restarts from the StartUp state. The increased time ݅ݐ ௝݊ is computed as follows:

 1

1

* () , +1iBCounti
j j

i

delay
tin tin j i

delay
 (2)

512

When the congestion signal ݀݁݇ܿ݋݈ܤ is i rather than 0, it
means that the amount of data is too large to be processed by
the transport layer indicated by the i-th packet. Since the delay
has a relatively close relationship with the network operation,
the delay change signal ݀݁݁ݐܽݎ is used to judge the conges-
tion situation, and its calculation is as follows:

 3

1()
i

k kk i
derate delay delay (3)

, where ݀݁݁ݐܽݎ computes the sum of the delay differences be-
tween three pairs of consecutive data packets. If the result is
negative, it is judged that the delay is showing an upward trend,
and the network link may enter a congested state.

IBCCA will remain in the ProbeBW state when the con-
gestion signal ݐ݊ݑ݋ܥܤ௜ does not change, and when derate is a
non-negative number, even if a smaller RTT value is not
measured within 10 seconds. When the congestion signal ݐ݊ݑ݋ܥܤ௜ becomes 1, the ݀݁݁ݐܽݎ is a negative number, even
if the 10s detection time is not full, it enters the ProbeRTT
state. In the ProbeRTT state, when the congestion signal ݐ݊ݑ݋ܥܤ௜ becomes 1, and ݀݁݁ݐܽݎ is negative, IBCCA extends
the time in the ProbeRTT state (200ms originally) or the round
trip time of a data packet by tin milliseconds.

IV. EVALUATION
To evaluate the network performance of the algorithm

model in a single stream scenario, a server is used to build two
virtual machines, acting as sender and receiver, respectively.
The two virtual machines and their network setup are shown
in Fig. 3. This experiment calibrated the time of the virtual
machines and configured the environment required for QUIC
transmission. In the burst traffic experiment, the experiment
simulates the situation of network burst traffic by transmitting
a certain amount of traffic every time interval. In the multi-
stream simulation, as shown in Fig. 4, the experiment was re-
peated using three streams and five streams in the network link,
which is compared with the single-stream scenario in Fig. 3.

In this paper, the experiment studied the performance of
three congestion control algorithms including BBR, CUBIC,
and the proposed IBCCA in wireless LAN. The experiment
was repeated 5 times for the three congestion control algo-
rithms, respectively, and their average network performance
and behaviors to deal with congestions were recorded for fur-
ther study.

Sender Receiver
Bottleneck link

Fig. 3. Simulate network transmission scenarios for single-stream

... ...

... ...

1

3

2

4

n

...

User
connection

5

6

7

Senders

Bottleneck link

Receivers
Fig. 4. Simulate network transmission scenarios for multi-stream

The simulation setup of burst flow is shown in Fig. 5. A con-
stant sending bit rate of 90 Mbps is sent to the network by the
sender. During the entire transmission, ten timestamps are se-
lected every 10 seconds to start burst traffic with set values of
duration and bit rate. This is designed to simulate burst traffic
and the original data transmitted in the bandwidth-limited net-
work. The experiment was repeated with burst traffic bit rate
selected from 28Mbps, 35Mbps to 42Mbps, and duration se-
lected from 1, 2, 3 seconds. When setting the burst bitrates to
28 Mbps, 35 Mbps to 42 Mbps, the throughputs of the three
algorithms change significantly, and the performance compar-
ison of the experimental results is also more obvious. Results
are collected to study the Goodput and delay of the three algo-
rithms under congestion. Goodput measures the throughput of
original data during the transmission process. The delay is the
difference between the receiving timestamp and the sending
timestamp. The emergence of burst traffic may cause network
congestion, competing with the original data for limited band-
width, and thus resulting in a decrease in Goodput.

...burst burst burst burst

1 2 3 10

1s/2s/3s 1s/2s/3s 1s/2s/3s 1s/2s/3s

28/35/42
Mbps

28/35/42
Mbps

28/35/42
Mbps

28/35/42
Mbps

Fig. 5. Burst traffic simulation for single-stream

(a) goodput (b) delay

Fig. 6. Average goodput and network transmission delay of the three algo-
rithms with different burst traffic of different bit rates

(a) goodput (b) delay

Fig. 7. Average goodput and network transmission delay of the three algo-
rithms under burst traffic with different durations

In Fig. 6a, Fig. 6b, Fig. 7a, and Fig. 7b, in response to the
inevitable burst traffic problem of web browsing, the experi-
ment tested and evaluated bursts of different bit rates and burst
durations. Fig. 6a and Fig. 6b keep the duration of the entire
burst flow process unchanged at 1000ms and change the bit
rate of the burst flows. From Fig. 6a and Fig. 6b, it can be seen
that the IBCCA algorithm achieves higher network goodput,
faster convergence speed, lower network round-trip time, and
better network performance when dealing with burst traffic of
lower bit rates. When the bit rate of burst traffic increases, the
CUBIC algorithm obtains higher goodput and smaller delay

28 35 42
0

10

20

30

40

50

G
oo

dp
ut

 (M
bp

s)

Bit Rates (Mbps)

 CUBIC
 BBR
 IBCCA

28 35 42
0

1

2

3

4

5

6

7

D
el

ay
 (m

s)

Bit Rates (Mbps)

 CUBIC
 BBR
 IBCCA

1000 2000 3000
0

10

20

30

40

G
oo

dp
ut

 (M
bp

s)

Burst Duration (ms)

 CUBIC
 BBR
 IBCCA

1000 2000 3000
0

1

2

3

4

5

6

7

8

D
el

ay
 (m

s)

Burst Duration (ms)

 CUBIC
 BBR
 IBCCA

513

than the IBCCA algorithm. Fig. 7a and Fig. 7b maintain the
average bit rate of each burst traffic at 35 Mbps and change
the duration of the three burst flows to be 1000, 2000, and
3000 ms, respectively. In Fig. 7a and Fig. 7b, when the dura-
tion of network burst traffic is short, the IBCCA algorithm
achieved better goodput. When the duration is longer, the
goodput of CUBIC is higher. All in all, when the burst dura-
tion and average bit rate of burst traffic are within a certain
range, IBCCA has better network transmission performance.
According to [18], we guess that the large number of retrans-
missions caused by BBR’s overestimation of the buffer may
lead to BBR’s poor performance in Goodput and fairness. A
large number of retransmissions will occupy part of the band-
width, and the bandwidth will be occupied again. It will fur-
ther lead to packet loss and retransmission, resulting in lower
Goodput and fairness. If the burst traffic appears in the Prob-
eRTT state, it is easier to synchronize when the queue is ex-
hausted. When the burst traffic joins, the IBCCA algorithm
uses the congestion block signal sent by congestion to take the
state transition operation and it enters ProbeRTT state. The
status can be synchronized immediately when the queue is ex-
hausted, and the best RTT can be measured. Increasing the
time in the ProbeRTT state can also reduce the sending rate to
reduce packet loss and retransmission.

Table I and Table II are the average goodput of the burst
traffic of different bit rates and durations, respectively. In Ta-
ble I, the goodput result of the IBCCA algorithm is the highest
when the burst traffic bit rate is 35Mbps. In the other two 28
Mbps and 42 Mbps cases, the goodput result of the CUBIC
algorithm is the best. In Table II, the goodput result of the IB-
CCA algorithm is the best in the two cases of 1000ms and
3000ms, and the goodput result of the CUBIC algorithm is the
best in the case of 2000ms. From Table I and Table II, the
goodput of IBCCA is better than the BBR algorithm and CU-
BIC algorithm in the 35Mbps case. Goodput result of IBCCA
is worse than the CUBIC algorithm in the situation of 35Mb
data packet size and 2000ms duration.

Table III to Table VII are test evaluations of goodput, de-
lay, and fairness for single stream and multiple stream trans-
missions. Table III shows that in a single stream transmission
scenario, the network goodput of the IBCCA algorithm is the
highest, and the network round-trip time of the BBR algorithm
is the smallest. The experimental results of competition in the
three streams scenario are shown in Table IV and Table V, and
Table VI and Table VII contain results from the five streams
scenario. In the case of three streams and five streams, the
goodput of IBCCA is not significantly improved compared to

TABLE I. THE AVERAGE GOODPUT (MBPS) OF BURST TRAFFIC WITH
DIFFERENT BIT RATES

Protocol Burst Traffic Bit Rate (Mbps)
28 35 42

CUBIC 53.12 39.78 25.14
BBR 35.98 27.78 16.79

IBCCA 49.57 45.49 24.11

TABLE II. THE AVERAGE GOODPUT (MBPS) OF BURST TRAFFIC WITH
DIFFERENT BURST DURATIONS

 Protocol Burst Traffic Duration (ms)
1000 2000 3000

CUBIC 39.78 46.25 33.42
BBR 38.93 33.65 31.27

IBCCA 45.49 37.28 36.19

TABLE III. THE AVERAGE GOODPUT (MBPS) AND AVERAGE NETWORK
TRANSMISSION ROUND TRIP TIME (MS) OF THE THREE ALGORITHMS FOR

A SINGLE STREAM

Protocols Flow-1
Goodput Delay

CUBIC 73.71 5.33
BBR 62.011 4.29

IBCCA 76.49 5.29

TABLE IV. THE AVERAGE GOODPUT (MBPS) AND FAIRNESS OF THE
THREE ALGORITHMS FOR THE THREE STREAMS

Protocols Flow-1 Flow-2 Flow-3 Fairness Goodput Goodput Goodput
CUBIC 39.73 38.03 17.22 0.905

BBR 42.41 16.71 12.34 0.763
IBCCA 33.79 28.26 33.52 0.994

TABLE V. THE AVERAGE NETWORK TRANSMISSION ROUND TRIP TIME
OF THE THREE ALGORITHMS FOR THE THREE STREAMS (MS)

Protocols Flow-1 Flow-2 Flow-3 Sum Delay Delay Delay
CUBIC 8.09 7.36 7.80 23.25

BBR 5.90 7.45 6.24 19.59
IBCCA 7.14 7.80 7.45 22.39

TABLE VI. THE AVERAGE GOODPUT (MBPS) AND FAIRNESS OF THE
THREE ALGORITHMS FOR FIVE STREAMS

Protocols
Flow-1 Flow-2 Flow-3 Flow-4 Flow-5

Fairness Good
-put

Good
-put

Good
-put

Good
-put

Good
-put

CUBIC 18.46 24.90 22.63 17.08 16.80 0.975
BBR 14.95 9.53 14.91 13.77 26.51 0.888

IBCCA 16.33 17.28 20.66 24.49 20.80 0.979

TABLE VII. THE AVERAGE NETWORK TRANSMISSION ROUND TRIP TIME
OF THE THREE ALGORITHMS FOR FIVE STREAMS (MS)

Protocols Flow-1 Flow-2 Flow-3 Flow-4 Flow-5 Sum Delay Delay Delay Delay Delay
CUBIC 9.37 8.28 9.77 9.58 12.50 49.50

BBR 9.02 12.01 9.56 8.41 7.27 46.27
IBCCA 10.40 9.50 9.28 7.59 9.92 46.69

that of CUBIC. However, the goodput of IBCCA achieved the
best fairness for both multi-stream scenarios. When multiple
streams are competing in the transmission link of the wireless
LAN, the BBR algorithm will use a smaller pacing rate [7]. In
this case, the detection of network bandwidth is too small,
which reduces the actual goodput.

From Table III, Table V, and Table VII, it can be noted
that the delay of BBR is the lowest compared to other algo-
rithms, but its goodput is significantly lower than the other two
algorithms. The delay of a single stream and multiple streams
of IBCCA is numerically lower than BBR but higher than CU-
BIC.

It can be concluded that the proposed IBCCA algorithm
has better network performance of goodput and fairness in
both single stream or multiple stream scenarios. As for the de-
lay, IBCCA does not outperform BBR, but it has a lower delay
than CUBIC.

V. CONCLUSION
This paper evaluates the network performance of CUBIC,

BBR, and IBCCA algorithms under wireless LAN. Due to the
smaller pacing rate, the BBR algorithm has the lowest goodput
in wireless scenarios and the lowest fairness in multi-stream
transmission. As the default congestion control protocol, the
CUBIC algorithm has no obvious shortcomings in the network

514

performance of burst traffic and multi-stream competition ex-
periments in the context of wireless LAN. But when it com-
pares with IBCCA when the burst traffic is small or the burst
duration is short, the proposed IBCCA achieves higher net-
work goodput and lower network transmission round-trip time.
What’s more, in the experiment of multi-stream transmission,
the IBCCA algorithm achieves higher fairness.

According to the result analysis of this paper, it is recom-
mended that the system can switch between IBCCA and CU-
BIC congestion control algorithms, and actions should be
made based on whether the improvement of network perfor-
mance can be achieved as the burst traffic bit rate varies. How-
ever, the algorithm scheme switching may result in perfor-
mance degradation due to extra complexity in protocol imple-
mentation as well as additional computation delay, protocol
integration, and so on. Whether this loss can be compensated
by the benefit from the algorithm switching has not been ver-
ified in this paper.

In more realistic streaming and burst traffic scenarios, the
network is more complex and various other factors should also
be taken into consideration as well, such as background traffic
of various protocols with different congestion control schemes,
multi-path routing, QoS level, priority queue, etc. Finally, the
issue of fairness and friendliness between the various conges-
tion control algorithms of TCP flow and QUIC flow is not
tested and evaluated in this article. This article conducts burst
traffic and multi-stream transmission experiments in wireless
LAN scenarios. Researches on WLAN [20] [21] and QoS-ori-
ented transmission [22] [23] describe scenarios such as multi-
media transmission and in-vehicle network systems. In the fu-
ture, we expect to conduct more experiments (such as 3D/VR
video transmission with different RTT and data rates) in other
scenarios (Ethernet, WAN or cellular network, etc.)

ACKNOWLEDGMENT
This work was supported by a grant from the National Nat-

ural Science Foundation of China (Grant No. 61801341). This
work was also supported by the Research Project of Wuhan
University of Technology Chongqing Research Institute, the
Fundamental Research Funds for the Central Universities
(Grant No. WUT:2021CG008), and Green Intelligent Inland
Ship Innovation Programme (Grant No. MC-202002-C01-04).

REFERENCES
[1] Iyengar, Janardhan, and Martin Thomson. “QUIC: A UDP-Based Mul-

tiplexed and Secure Transport; draft-ietf-quic-transport-24,” Internet
Engineering Task Force: Newark, DE, USA. 2019.

[2] Roskind, Jim. “Quick UDP Internet Connections: Multiplexed Stream
Transport over UDP.” Adresse: https://docs.google.com/docu-
ment/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34,
December 2013

[3] Hoe, C. Janey. “Improving the Start-up Behaviour of A Congestion
Control Scheme for TCP.” ACM SIGCOMM Computer Communica-
tion Review vol.26, pp. 270-280, October 1996.

[4] Brakmo, Lawrence S., Sean W. O'Malley, and Larry L. Peterson. “TCP
Vegas: New Techniques for Congestion Detection and Avoidance.”
Proceedings of the conference on Communications architectures, pro-
tocols and applications, vol 24, pp. 24-35, October 1994.

[5] Xu, Lisong, Khaled Harfoush, and Injong Rhee. “Binary Increase Con-
gestion Control (BIC) for Fast Long-distance Networks.” IEEE INFO-
COM 2004, vol. 4. IEEE, pp. 2514-2524, 2004.

[6] Ha, Sangtae, Injong Rhee, and Lisong Xu. “CUBIC: a New TCP-
friendly High-speed TCP Variant.” ACM SIGOPS operating systems
review, vol 42, pp. 64-74, July 2008.

[7] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Ye-
ganeh, and Van Jacobson. “BBR: Congestion-based Congestion Con-
trol. Commun.” ACM, vol 60, pp. 58–66, June 2017.

[8] De Cicco, Luca, Gaetano Carlucci, and Saverio Mascolo. “Understand-
ing the Dynamic Behaviour of the Google Congestion Control for
RTCWeb.” 2013 20th International Packet Video Workshop. IEEE, pp.
1-8, 2013.

[9] Narayan, Akshay, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. Restructuring Endpoint Congestion Control.” in Pro-
ceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, pp. 30-43. 2018.

[10] Saurabh, S. Prakash, P. K. Singh, S. K. Nandi, and S. Nandi. “Is QUIC
Quicker Than TCP?: A Performance Evaluation.” In Workshops of the
International Conference on Advanced Information Networking and
Applications. Springer, Cham, pp. 129-138, 2019.

[11] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld. “Per-
ceiving QUIC: Do Users Notice or Even Care?” Proceedings of the
15th International Conference on Emerging Networking Experiments
And Technologies, pp 144-150. December 2019.

[12] Minh Nguyen, Hadi Amirpour, Christian Timmerer, and Hermann
Hellwagner. “Scalable High Efficiency Video Coding Based HTTP
Adaptive Streaming over QUIC.” Proceedings of the Workshop on the
Evolution, Performance, and Interoperability of QUIC, pp.28-34, Au-
gust 2020.

[13] Arisu, Sevket, Ertan Yildiz, and Ali C. Begen. “Game of Protocols: Is
QUIC Ready for Prime Time Streaming?” International Journal of
Network Management, vol 30, pp. e2063, February 2020.

[14] Kleinrock, Leonard. “Power and Deterministic Rules of Thumb for
Probabilistic Problems in Computer Communications.” Proceedings of
the International Conference on Communications. vol. 43, pp. 1-43,
June 1979.

[15] A. Morelli, M. Provosty, R. Fronteddu, and N. Suri. “Performance
Evaluation of Transport Protocols in Tactical Network Environments.”
MILCOM 2019-2019 IEEE Military Communications Conference
(MILCOM). IEEE, pp. 30-36, 2019.

[16] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine
Sherry. “Modeling BBR's Interactions with Loss-based Congestion
Control.” Proceedings of the Internet Measurement Conference, pp.
137-143, October 2019.

[17] S. Zhang, W. Lei, W. Zhang, Y. Guan and H. Li. “Congestion Control
and Packet Scheduling for Multipath Real Time Video Streaming.”
IEEE Access, vol. 7, pp.59758-59770, 2019.

[18] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer and G.
Carle. “Towards a deeper understanding of TCP BBR congestion con-
trol.” 2018 IFIP networking conference (IFIP networking) and work-
shops. IEEE, pp. 1-9, 2018.

[19] R. Jain, D. Chiu, W. Hawe. “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,
Comput.” Sci. cs.ni/9809099 (1998).

[20] Wu, G. Min, and L. T. Yang, “Performance Analysis of Hybrid Wire-
less Networks Under Bursty and Correlated Traffic.” in IEEE Trans-
actions on Vehicular Technology, vol. 62, no. 1, pp. 449-454, January
2013.

[21] G. Min, Y. Wu and A. Y. Al-Dubai, “Performance Modelling and
Analysis of Cognitive Mesh Networks.” in IEEE Transactions on Com-
munications, vol. 60, no. 6, pp. 1474-1478, June 2012.

[22] Y. Wu, G. Min, and A. Y. Al-Dubai, “A New Analytical Model for
Multi-Hop Cognitive Radio Networks.” in IEEE Transactions on Wire-
less Communications, vol. 11, no. 5, pp. 1643-1648, May 2012.

[23] N. Najjari, G. Min, J. Hu, Z. Zhao, and Y. Wu, “Performance Analysis
of WLANs with Heterogeneous and Bursty Multimedia Traf-
fic.” GLOBECOM 2017 - 2017 IEEE Global Communications Confer-
ence, pp. 1-6, 2017.

515

