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Abstract—Big data are everywhere. Examples of big data
include contact tracing data of patients who contracted coro-
navirus disease 2019 (COVID-19). On the one hand, mining
these contact tracing data can be for social good. For instance,
it helps slow down the spread of COVID-19. It also helps
people diagnosed with COVID-19 get referrals for services and
resources they may need to isolate safely. On the other hand,
it is also important to protect the privacy of these COVID-19
patients. Hence, we present in this paper a solution for privacy
preservation of COVID-19 contact tracing data. Specifically, our
solution preserves the privacy of individuals by publishing only
their spatio-temporal representative locations. Evaluation results
on real-life COVID-19 contact tracing data from South Korea
demonstrate the effectiveness and practicality of our solution in
preserving the privacy of COVID-19 contact tracing data.

Index Terms—computer science, information technology,
database and data management, big data, data science and
systems, data and informatics, information security, privacy,
data mining, privacy preserving data mining, spatio-temporal
data, spatial data, temporal data, spatio-temporal hierarchy,
visualization

I. INTRODUCTION

Modern technological advancements have contributed to the
rapid generation and collection of very large volumes of data
from a wide variety of rich data sources in numerous real-life
applications. These include:

• networks (e.g., social networks [1–5], transportation net-
works [6–9]);

• financial time series [10];
• biomedical data (e.g. disease reports [11, 12], Genomic

data [13–16], epidemiological data [17, 18]); and
• trajectory data [19, 20] (e.g., transportation trajectories,

weather trajectories [21, 22]).
As a consequence, big data [23–25] are everywhere. These
big data may be at different veracity levels (e.g., imprecise or
uncertain data [26–30], precise data).

Coronavirus disease 2019 (COVID-19), which was caused
by the acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), has led to rapid generation and collection of valuable
big data. Examples of big data related to COVID-19 include
epidemiological data and statistics [31], disease reports and
blood test results [32, 33], computed tomography (CT) scan
images of lungs [34, 35], indicators for measuring impacts
of COVID-19 on various socio-economic aspects of our daily
life [36, 37], as well as contact tracing data and trajectories.

Applying data science [38, 39]—which makes good use of
a fusion of data mining [40–47], machine learning [48–51],
mathematics and statistics [52, 53], informatics [54, 55], data
analysis [56–61], and visualization [62–65]—to these big data
(e.g., contact tracing data) can be for social good. For instance,
it discovers implicit, previously unknown and potentially use-
ful knowledge, which may help slow down the spread of
COVID-19. It may also help people diagnosed with COVID-
19 get referrals for services and resources they may need
to isolate safely. In addition, advancement in communication
and computing technologies [66–69] has made it easy for
governments and research institutions to invent new solutions
[70–72] to combat the spread of diseases. These solutions1

include:
• alerting apps such as COVID Alert2 (a COVID-19 expo-

sure notification app used in Canada);
• contact tracing apps such as COVIDSafe3 used in Aus-

tralia;
• information apps such as Coronavı́rus - SUS4 used in

Brazil;
• medical reporting apps such as allertaLOM5 used in the

Italian region of Lombardia;
• quarantine enforcement apps such as Stay Home Safe6

used in Hong Kong; and
• self-diagnostic apps such as CoronApp7 used in Chile.
While applying data science to the big data (e.g., COVID-19

contact tracing data) can be for social good, it is also important
to protect the privacy of these COVID-19 patients. A way to
protect their privacy is to anonymize data. Generally, there are
two broad categories of data anonymization techniques:

• syntactic models [73–75], which are characterized by
generalization or suppression. However, this often result
in loss of information.

• differential privacy [76–79], which is characterized by
their application of a random noise so that any addition

1https://www.coe.int/en/web/data-protection/contact-tracing-apps
2https://www.canada.ca/en/public-health/services/diseases/coronavirus-

disease-covid-19/covid-alert.html
3https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
4https://www.gov.br/pt-br/apps/coronavirus-sus
5https://www.allertalom.regione.lombardia.it/homepage
6https://www.coronavirus.gov.hk/eng/stay-home-safe.html
7https://coronapp.gob.cl/
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of a data point to the dataset (or removal of a data point
from the dataset) may not have significant effects on
the outcome. However, addition of noise may distort the
dataset beyond its usefulness.

Thus, utility-privacy trade off is a common concern in data
anonymization.

To facilitate discovery of useful knowledge from COVID-
19 contact tracing data via data science (or data mining) while
preserving privacy of COVID-19 patients, we present in this
paper a solution for privacy preservation of COVID-19 contact
tracing data. Specifically, we present the concept of spatio-
temporal representative point, which is a non-trivial extension
of the representative point used in geographical information
system (GIS) for the temporal correlated dataset. Our solution
preserves the privacy of individuals by publishing only their
spatio-temporal representative locations via differential privacy
mechanism. It maintains a good balance of anonymization and
data utility. The solution builds a spatio-temporal hierarchy
and properly aggregates the counts of attributes at different
levels of the hierarchy.

As a preview, when applying our solution to the dataset
in Table I, we focus on anonymizing temporal and spatial
attributes within the dataset. Other attributes (e.g., type, dis-
trict, City, ID) may be quasi-identifiers or sensitive identifiers
that can be aggregated. Generally, we select an identifier as a
grouping reference for utility measurement, and aggregate all
other attributes by a frequency count query like:

SELECT COUNT(*)
FROM dataset name
GROUP BY gr, date, temporal point

where gr is the grouping reference. We will apply our solution
to a real-life South Korean COVID-19 patient route dataset.

We organize the rest of this paper as follows. The next
section provides background and related works, and Section III
presents our privacy-perserving solution . Implementation de-
tails are described in Section IV, and Section V describes the
experimental evaluation of our proposed solution. Conclusions
an future work are presented in Section VI.

II. BACKGROUND AND RELATED WORKS

Over the past few decades, data mining algorithms has
focused on achieving space and time efficiency leading to
research such as bitwise pattern mining [80] and scalable
vertical mining [81]. However, recent development and more
specifically, the most recent COVID-19 pandemic has made
anonymization an important concept in data mining. Thus, in
recent years researchers have designed models and techniques
for anonymization in data mining including anonymization
by surrogate vectors and LFP-tree [82], addition of noise
to trajectory [83], privacy preservation in uncertain bid data
mining [84] and keyword search on encrypted outsourced data
[85]. Anonymization has been added as a step in data mining
to privately preserve the mining outcomes.

Eom et al. [82] combined length-based frequent pattern
tree (LFP-tree) and surrogate vectors models for publishing of

anonymized trajectory databases. The study first transformed
the location data into surrogate vectors using two-dimensional
space grids and then employed the novel length-based frequent
pattern tree (LFP-tree) to skip unnecessary task while search-
ing for minimum violating sequences (MVS). The surrogate
vectors approach can generally be used to identify the shape
of trajectory, measure efficiency of trajectory, and grasp user
tendency. At the same time, it ensures that no single point is
released or disclosed based on trust. As a preview, our solution
uses temporal and spatial correlation in grouping records to
(a) eliminate individual association with a record and (b) keep
the temporal and spatial utilities of the dataset.

Wang et al. [86] extend maximal frequent itemsets mining
on sensitive data by utilizing sequence exponential mechanism
(SEM). Huo et al. [87] generalized stay of points for preserv-
ing privacy of trajectories. Dwork [88] proposed differential
privacy, to ensure any addition of a data point to the dataset
(or removal of a data point from the dataset) does not have
significant difference in the probability of outcomes of any
aggregate function. Lee et al. [89] examined current issues
on management and control of privacy level in big data de-
identification, and suggested solutions to these issues.

III. OUR PRIVACY PRESERVING SOLUTION

In this section, we present the overview of our solution, as
shown in Fig. 1. We also discuss the three components of the
solution: temporal hierarchy, spatio-temporal representative
point and Laplace mechanism of differential privacy.

Fig. 1: An overview of our solution

A. Temporal Hierarchy
We build temporal hierarchy, which aggregate time series

data to a user-specified periodic level—like quarterly (Q),
monthly (M ), daily (D), and or hourly (H)—such that:

Y =
4∑

i=1

Qi (1a)

Qi =
3∑

j=1

Mj (1b)

Mj =
d∑

k=1

Dk (1c)

Dn =
24∑

n=1

Hn (1d)
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TABLE I: South Korean patient route data

ID Date District (“gu”) City Type Latitude Longitude
68 2020-Feb-25 Gangnam-gu Seoul public transportation 37.493601 127.079526
86 2020-Feb-25 Gangnam-gu Seoul public transportation 37.487468 127.101324
93 2020-Feb-25 Gangnam-gu Seoul public transportation 37.514236 127.031593
63 2020-Feb-26 Gangnam-gu Seoul restaurant 37.499907 127.037393
66 2020-Feb-26 Gangnam-gu Seoul restaurant 37.504689 127.043847
86 2020-Feb-26 Gangnam-gu Seoul restaurant 37.516567 127.021503
66 2020-Feb-26 Gangnam-gu Seoul cafe 37.505153 127.044054
86 2020-Feb-26 Gangnam-gu Seoul cafe 37.522466 127.037943
93 2020-Feb-26 Gangnam-gu Seoul pharmacy 37.509681 127.032382
86 2020-Feb-28 Gangnam-gu Seoul restaurant 37.516567 127.021503
93 2020-Feb-28 Gangnam-gu Seoul restaurant 37.514236 127.031593

105 2020-Feb-28 Gangnam-gu Seoul restaurant 37.504356 127.043652

TABLE II: Location set aggregated from the temporal hierarchy

Group# #rec in group Date District City Type Location set
{(37.493601, 27.079526),

1 3 2020-Feb-25 Gangnam-gu Seoul public transportation (37.487468, 127.101324),
(37.514236, 127.031593)}
{(37.499907, 127.037393),

2 3 2020-Feb-26 Gangnam-gu Seoul restaurant (37.504689, 127.043847),
(37.516567, 127.021503)}

3 2 2020-Feb-26 Gangnam-gu Seoul cafe {(37.505153, 127.044054),
(37.522466, 127.037943)}

4 1 2020-Feb-26 Gangnam-gu Seoul pharmacy {(37.509681, 127.032382)}
{(37.516567, 127.021503),

5 3 2020-Feb-28 Gangnam-gu Seoul restaurant (37.514236, 127.031593),
(37.504356, 127.043652)}

TABLE III: Spatio-temporal representative point

Group# #rec in group Date District City Type Spatio-temporal rep. pt.
1 3 2020-Feb-25 Gangnam-gu Seoul public transportation (37.498435, 127.070814)
2 3 2020-Feb-26 Gangnam-gu Seoul restaurant (37.507054, 127.034247)
3’ 3 2020-Feb-26 Gangnam-gu Seoul others (37.507054, 127.038126)
5 3 2020-Feb-28 Gangnam-gu Seoul restaurant (37.511719, 127.032249)

B. Spatio-Temporal Representative Points

A way to attempt to preserve privacy of a collection spatial
points appear within a temporal interval is to randomly select
a point as a representative from the collection. However, a
potentially problem is that such a selection may lead to bias
(e.g., when a edge point is randomly selected).

A better way to preserve privacy of a collection n spatial
points appear within a temporal interval is select their centroid
as a spatio-temporal representative point. This centroid is a
center of mass, a mean center of the coordinates, or an average
of x- and y-coordinates over n observations:

R(x, y) =

(∑n
i xi

n
,

∑n
i yi
n

)
(2)

An alternative way to compute such a spatio-temporal repre-
sentative point is to use the minimum square distance Dmin

between a set of coordinates (x, y) among all n points within
the collection:

Dmin = min
∑[

(xi − xj)
2
+ (yi − yj)

2
]

(3)

We present the algorithm for finding spatio-temporal repre-
sentative point in Algorithm 1. First, we generate the temporal

hierarchy and create a location set (i.e., a matrix of coordinates
at the same temporal level). Then, we compute the average
of all coordinates as a spatio-temporal representative point
using Eq. (2). To preserve privacy of individuals, if the
computed centroid happens to match a real data point within
the collection (i.e., within the location set), we add Laplace
noise to preserve the privacy.

Algorithm 1 Spatio-temporal representative point with differ-
ential privacy

1: Input Dataset D, minimum support minsup
2: Output Differential-privacy aggregated dataset with tem-

poral point D′

3: Compute Temporal Hierarchy T
4: Group by quasi-identifiers and create geometry list/matrix

M (i.e., location set)
5: Compute spatio-temporal representative point as an aver-

age of coordinates in M

Example Let us illustrate Algorithm 1 by considering route
data between February 25-28, 2020, with 12 sample patient
route information presented in Table I. All patient route
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records were from the South Korean capital city of Seoul,
in particular, in the district of Gangnam-gu. The first three
records occurred in February 25 when patients used public
transportation. Among the next six records for February 26,
three of them dined at restaurants, two visited a cafe, and the
last record represents a visit to a pharmacy. The final three
records occurred in February 28 when patients also dined at
restaurants. Our algorithm builds a temporal hierarchy, groups
these 12 records by day, district, city, type of establishment
(e.g., public transportation, restaurant), and generates a co-
ordinate list for the resulting group as shown in Table II.
Afterwards, it computes the average of each of these four
location sets as their spatio-temporal representative points for
these four groups using Eq. (2). For any group not satisfying
the minsup threshold (e.g., groups 3 and 4 do not satisfy
minsup of 3 records), we change the type to “others”, re-
aggregate and test again. Specifically, for groups 3 and 4,
the cafe and the pharmacy are grouped as “others” and an
average of their coordinates becomes their spatio-temporal
representative point for the resulting group. The final output
of our sample dataset is presented in Table III where we have
one point representing each group.

C. Differential Privacy via Laplace Mechanism

Our solution is guaranteed to preserve the privacy of both
the actual timestamp and location by using:

• the temporal hierarchy to preserve the privacy of the
actual timestamp, and

• the spatio-temporal representative point to preserve the
privacy of the actual location.

If the computed centroid happens to be an actual location,
it applies Laplace mechanism as shown in Algorithm 0 to
add Laplace noise. The probability density function for this
Laplace mechanism having mean µ and ϵ level of noise is:

f(x | µ, ϵ) = 1

2ϵ
e−|

x−µ
ϵ | (4)

Algorithm 2 Laplace Mechanism

1: Input Dataset D
2: Output Differential-privacy dataset D′

3: for each Temporal geometry formed by points in the
location set do

4: (x,y).add(Laplace noise)

By doing so, at any level t of the temporal hierarchy, a
randomized mechanism A satisfies ϵ-differential privacy on
spatio-temporal representative point provided that any location
output zt from a spatio-temporal dataset xt and a neighbour-
ing spatio-temporal dataset xt∗ obtained by the addition or
removal a record is not significantly different:

Pr (A(xt = zt))

Pr (A(xt∗ = zt))
≤ eϵ (5)

See Fig. 1.

IV. EVALUATION

To evaluate our solution, we compare it with existing
baseline differential privacy by Laplace mechanism. For the
Laplace mechanism, we generalize the timestamp to day level
without aggregation and apply Laplace noise to each spatial
record.

First, we evaluated the impact of parameters. We vary the
value of ϵ from 0.01 to 0.1. The optimal difference is observed
when ϵ = 0.09, which we consider as the optimal privacy
suitable for protecting the published data with differential
privacy mechanism. The spatio-temporal representative point
differential privacy mechanism as shown in Fig. 2 provides
protection for the patients such that their information is hidden
in space and time. Individual patient could be traced in the
original unprotected dataset using the spatial and temporal
attributes. The identity of some patients could be traced by
an adversary with background knowledge given the time and
location visited. The patient visited different locations such
as store and restaurants by public transportation before finally
tested in the hospital. With our solution, the actual patient
identity is unknown.

Moreover, we extend the notion of near object relationship
to privacy by grouping all patients and their activities under
temporal and spatial correlation. For instance, patients route
trace in Fig. 3(a) shows all locations visited by 69 patients
on February 17, 2020, with 128 points. Our version of the
same patient route data after applying our solution is shown
in Fig. 3(b), where no patient information is revealed. Privacy-
preserved data are represented by 53 temporal representative
points while the privacy is enhanced with Laplace differential
privacy mechanism such that the knowledge of any adversary
is limited to the trends within the aggregated time series
data. The grouping of patients using temporal hierarchy still
provides essential route information necessary for contact
tracing without relating the information to any specific patient.

Next, we evaluated the compression ratio. We computed
the spatial and file size compression ratio for our solution.
Results presented in Table IV shows that our solution sub-

Fig. 2: SKCOVID19 points
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(a) Patient trace Feb 17 (b) Protected trace Feb 17

Fig. 3: SKCOVID19 data before and after protection

TABLE IV: Spatial and File Compression Ratio

Model #points File size
Laplace 100% 100%

Our solution 34.7% 31.8%

stantially reduces both the number of points and file size when
compared with the original number of points and original file
size.

We also evaluated the aggregate queries. We considered ag-
gregation without differential privacy by varying the temporal
hierarchy level and aggregation parameter. When aggregated
by province, city and infection route, we grouped the
dataset by province, city and infection route while varying
the temporal hierarchy by day, week and month. We then
calculated the average for the spatial data to represent the
group. The resulting count query result is presented in Table V.
We observed that the aggregation by day after reclassifying all
trajectories with less than minsup=3 occurrence as ‘Others’
has the lowest Pearson correlation and the highest root mean
square error (RMSE) of 0.0483. This is expected due to
the level of granularity of presenting daily data: Lot of the
occurrence that are less than three are reclassified as ‘others’
thereby lowering the utility of the dataset. However, consid-
ering the disclosure risk, the daily aggregation is still very
useful because of the time sensitive nature of the dataset. The
data may become obsolete and less useful if such disclosure
is delayed for instance by a month. The weekly aggregation
provided the balance of utilities and protection with RMSE of
0.0074.

When aggregated by province and infection route, the
resulting count query is presented in Table VI. Disclosure at
provincial level presents a lesser risk in term of the RMSE
and aggregation results. The resulting aggregation by week
provided the balance of utilities and privacy with root mean
square error of 0.0604 and good correlation with the original
dataset (0.992). The details of the RMSE and Pearson corre-
lation for all the different variation of our temporal hierarchy
is presented in Tables VII and VIII.

Finally, we conducted a case study for the data in the capital
city of Seoul. We investigated the impact of our solution
using the City of Seoul having the highest route of infection.

TABLE V: Aggregation by province, city and infection route

Infection route Dataset Day Week Month
academy 11 4 5 5
airport 120 73 95 109
bakery 24 3 3 3
bank 28 3 12 14

beauty salon 14 0 5 7
cafe 85 13 48 49

church 120 68 86 101
gas station 12 0 0 3

gym 20 6 11 12
hospital 1496 614 1238 1392
lodging 29 3 14 17
pc cafe 46 0 24 28

pharmacy 200 21 74 132
post office 15 0 4 7

public transportation 382 95 255 307
restaurant 451 98 255 326

school 49 8 22 25
store 507 157 344 397

university 14 0 3 9
others 1698 4155 2823 2378
Total 5321 5321 5321 5321

TABLE VI: Aggregation by province and infection route

Infection route Dataset Day Week Month
academy 11 4 5 5
airport 120 87 108 116
bakery 24 3 7 16
bank 28 3 14 21

beauty salon 14 0 5 7
cafe 85 33 61 73

church 120 74 98 113
gas station 12 0 3 6

gym 20 6 11 12
hospital 1496 1258 1456 1493
lodging 29 3 17 22
pc cafe 46 10 34 43

pharmacy 200 82 166 188
post office 15 0 5 8

public transportation 382 261 358 372
restaurant 451 273 398 438

school 49 15 32 40
store 507 346 471 493

university 14 0 4 11
others 1698 2863 2068 1844
Total 5321 5321 5321 5321

TABLE VII: Pearson correlation

Aggregation level Day Week Month
Type 0.994935 0.996386 0.999994

Province, type 0.935215 0.991849 0.998804
Province, city, type 0.796876 0.933743 0.972514

TABLE VIII: RMSE

Aggregation level Day Week Month
Type 0.048308 0.007400 0.001209

Province, type 0.231026 0.060400 0.021108
Province, city, type 0.928283 0.231700 0.120472
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Classifying infection route with less than 3 trajectories as
‘others’ route resulted in non-disclosure of some route such
as bakery, bank, beauty cafe, gas station, gym, PC cafe (i.e.,
internet cafe), post office, salon, and school at the daily level
of the temporal hierarchy. Beauty salon, gym and post office
are reclassified as ‘others’ at both the weekly and monthly
levels of the hierarchy. The resulting count query is presented
in Table IX. However, non-disclosure does not necessarily
translate to no contact tracing because the city may still trace
the contact on those infection routes without disclosing the
routes.

TABLE IX: Aggregation effect on Seoul data

Infection route Dataset Day Week Month
airport 18 13 18 18
bakery 6 4
bank 8 5 6

beauty salon 3
cafe 30 10 24 30

church 37 17 31 37
gas station 3 3 3

gym 3
hospital 603 582 601 603
lodging 8 3 6 8
PC cafe 19 14 19

pharmacy 53 30 51 53
post office 3

public transportation 192 166 191 192
restaurant 150 120 146 150

school 5 3
store 146 117 146 146
others 424 653 475 439
Total 1711 1711 1711 1711

V. CONCLUSIONS

We presented in this paper a solution for privacy preser-
vation of COVID-19 contact tracing data. Specifically, our
solution preserves the privacy of individuals by (a) building a
temporal hierarchy, (b) grouping similar data to preserve the
actual timestamp and locations, (c) representing each group
by their spatio-temporal representative points, and (d) adding
Laplace noise the representative points happen to be actual
locations. We evaluated our solution by measuring the spatial
error with the Harvasine distance and root mean square error
(RMSE). We also evaluated the utility of our solution using
aggregate queries. The results on real-life COVID-19 contact
tracing data collected from mobile devices in South Korea
demonstrate the effectiveness and practicality of our solution
in preserving the privacy of COVID-19 contact tracing data.

As ongoing and future work, we are exploring further
enhancements of our solution using the generative adversarial
network (GAN) [90]. GAN is a deep leaning model often for
generating synthetic data, speech, image or text by training and
learning patterns from the input dataset to preserve privacy
of individuals. We are also interested in transfer knowledge
learned to preserve privacy of other data.
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