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Abstract—Device-to-Device (D2D) communication has become
a promising and new paradigm for enhancing network per-
formance in cellular networks. D2D communication enables
users to communicate directly without passing through the base
station, thereby improving spectral efficiency and reducing com-
munication delay. However, due to the intertwined interference
environment, the shared spectrum and reused frequency may
limit the network performance. In this paper, We propose a
Proximal Policy Optimisation (PPO) algorithm based on Markov
Decision Process (MDP) to optimise resource allocation and
improve energy efficiency. Resource allocation and power control
are jointly considered with the aim of maximising the overall
throughput of the network while guaranteeing the minimum
requirement of Quality of Service (QoS). Extensive simulation ex-
periments are conducted to validate the efficacy of our proposed
scheme. The results demonstrate that our method outperforms
the traditional method in terms of energy efficiency and training
time.

Reinforcement learning, D2D communications, Resource
allocation, Power control, Energy efficiency.

I. INTRODUCTION

With the continuous evolution of wireless communication
systems, the explosive growth of data traffic carried by mo-
bile communications and the shortage of wireless spectrum
resources have forced cellular networks to face huge chal-
lenges [1]. Device-to-Device (D2D) communication enables
direct communications between two peer-to-peer user nodes to
improve resource utilisation and network capacity, becoming
one of the key technologies in the fifth generation (5G) cellular
networks [2]. In a distributed network composed of D2D
communication users, each user node can send and receive
signals, and is capable of automatic routing. The user nodes
of the network share part of the hardware resources bypassing
through the base station (BS) to improve resource utilisation
and Quality of Service (QoS) [3].

However, the sharing of spectrum resources may cause
interference to user communications, making the resource
allocation more complicated, thereby affecting the overall
communication experience. Therefore, it is essential to al-
locate spectrum resources appropriately to mitigate the mu-
tual interference and make up for the shortage of available
spectrum [4]. Moreover, proper resource management should
ensure effective improvement of the total throughput of D2D
communication without harmful interference to the cellular
network [5].

The issue of resource allocation has been treated in differ-
ent ways in the literature. Some existing methods optimise
resource allocation through the game theory model [6]–[10].

Rathi et al. [6] developed a game theory-based model to
offer optimal solutions to the resource allocation problems and
maximise the whole system throughput for device-to-device
communications. In [7], a game-theoretic resource allocation
scheme, termed GALLERY and a resource allocation protocol
based on the equilibrium derivation are proposed to improve
the system performance. The authors in [8] decompose the
resource allocation problem into independent sub-problems. A
sub-channel allocation algorithm is proposed, and unpopular
D2D users are assigned with higher priority to guarantee
fairness. In [9], D2D users act as relays for cellular users
to set up a relationship between the total average achievable
rate and resource allocation. Maximum resource allocation
is achieved by maximising the total average achievable rate
under the constraint of outage probability. In [10], the research
considers the dynamic network condition where direct D2D
communication is not possible and will require a relay. Aiming
at minimising the interference, a resource allocation method
for two-hop D2D communications has been proposed, and
the base station will give a higher priority to the resource
block that creates less interference. The result demonstrates
the scheme perform better compared to the random allocation
scheme.

Since the problem formulation of resource allocation in-
volves binary channel assignment parameters, it leads to a
non-convex, mixed-integer-non-linear program (MINLP), so
the solution obtained by using traditional technology is not
globally optimal and may not be available in real-time per-
formance. Therefore, deep learning approaches are developed
to address the resource allocation problem. Deep learning,
as a subset of Machine Learning (ML), uses the hierarchical
structure of artificial neural networks (ANN) to perform the
learning process [11]. The hierarchical function adopts a non-
linear method [12], which can effectively solve the problem
of resource allocation and management in communication
networks.

Extensive deep learning-based research has been conducted
on resource allocation in D2D communications [13]–[16]. Feki
et al. [13] proposed a dynamic neural Q-learning-based re-
source allocation algorithm for D2D-based communication in
the Long Term Evolution Advanced (LTE-A) cellular networks
under the constraint of the minimum QoS requirement. The
work in [14] utilises Deep Q-network (DQN) to maximise the
overall effective throughput by allocating channel resources to
each D2D pair. In [15], the authors propose a novel QoS-based
resource allocation method and adopt OFDMA to reuse the
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uplink resource. In [16], a decentralised resource allocation
scheme based on deep reinforcement learning is proposed
to allocate appropriate channel resources to each D2D pair
iteratively for maximising the overall effective throughput.

Besides the quality of service, energy efficiency is also
an important evaluation criterion of power control for D2D
communications underlaying cellular networks. Many ap-
proaches of power control have been proposed based on deep
learning in D2D Communications [17]–[20]. Gengtian et al.
[17] propose a reinforcement learning algorithm for adaptive
power control that helps reduce interference to increase sys-
tem throughput. The simulation results are compared with
the traditional algorithm in Long Term Evolution (LTE). In
[18], the authors introduce an online distributed reinforcement
learning algorithm to maximise network throughput while
guaranteeing QoS of all D2D users’ and cellular users’ (CUs)
considering the dynamic wireless channel environment. Ji et
al. [19] design a novel algorithm with two parallel deep Q-
networks (DQNs) to maximise the energy efficiency (EE) of
the considered network. The proposed deep RL based power
optimisation method with dynamic rewards achieves higher EE
while satisfying the system throughput requirements. In [20],
the power control problem is modelled as a Stackelberg game.
Simulation results show that the scheme is efficient with low
overhead.

Recently, resource management mainly considers both re-
source allocation and power control to minimise the interfer-
ence caused by D2D communications [21]–[29]. The authors
in [21] propose a D2D resource allocation and power control
(DRAPC) framework. The optimisation problem is defined to
maximise links supported in the network. In [22], the author
provides a low complexity algorithm for spectrum reuse and
power assignment. Through the demonstration of simulation
results, the overall system throughput has increased, and the
interference has been mitigated. However, the solutions are not
intelligent enough, address the importance of deep learning
approaches. In [23], the resource allocation problem is formu-
lated as a Mixed-Integer Non-Linear Programming (MINLP)
problem and transformed into a resource group (RG) allocation
problem, which can be solved optimally by the Hungarian
method. Luo et al. [24] use Q-learning, the basic RL algorithm,
to finish the channel assignment and the power allocation
at the same time. The system capacity has been improved.
In [25], a hybrid intelligent clustering strategy (HICS) based
on unsupervised learning is proposed. By maximising the
total energy efficiency of the D2D multicast cluster, a joint
resource allocation scheme is proposed. The simulation result
demonstrates the proposed algorithm has decreased the com-
putation complexity. Saied et al. [26] use an Actor-Critic Re-
inforcement Learning (AC-RL) approach to solve the resource
management problem. A distributed multi-agent reinforcement
learning (MARL) based joint SA-PC algorithm is proposed in
[27] for performing spectrum allocation and power control to
each D2D user in the network. In [28], the authors propose a
Stackelberg game (SG) guided multi-agent deep reinforcement
learning (MADRL) approach to make smart power control and

channel allocation decisions in a distributed manner. In [29],
the author considers the instability of the D2D communication
and proposes a mobility-aware joint resource allocation and
power allocation algorithm (MARP) to optimise the channel
resources allocation and power allocation.

In this paper, we investigate the joint mode selection, re-
source allocation and power control in a D2D-enabled hetero-
geneous network. Specifically, Deep Q-Network (DQN)-based
deep learning method is proposed for optimal resource allo-
cation, while proximal policy optimisation (PPO) is employed
for power control to improve the overall system throughput
with the constraint of QoS. The main contributions of this
work are as follows:
• We model the resource allocation and power control of

D2D communication as a joint optimisation problem,
which is formulated to maximise the overall system
throughput under the constraint of minimum QoS require-
ments.

• Considering the complexity and non-convexity of the
joint optimisation problem, a DRL-based method is pro-
posed to optimise the resource allocation and power con-
trol policy intelligently. The joint optimisation problem
is modelled as a Markov Decision Process.

• The simulation results demonstrate the proposed algo-
rithm effectively improves the overall energy efficiency
compared with the other two algorithms without affecting
the overall system throughput.

The rest of this paper can be organised as follows. Section
II presents the system model and optimisation problem. In
Section III, we model the resource management and power
control problem as MDP and formulate its basic elements,
including action, agent, state and environment. Section IV
shows the simulation results. Finally, section V concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model of the network is estab-
lished and introduced as shown in Fig. 1. We consider an
uplink communication single-cell scenario consisting of one
eNB in D2D based cellular user network. There is a set of
M = {1, 2, ...,m} cellular user equipments (CUEs) located in
the coverage area of an eNB and a set of N = {1, 2, ..., n}
D2D pairs within the cell. However, the randomly generated
distance between a D2D pair is restricted to approximate the
real case scenario, where the D2D communication method is
chosen based upon the spatial proximity of two cellular users.

In this paper, we only focus on the uplink transmission
of the cellular users. Considering each CUE occupies one
resource block (RB), which can be shared by multiple D2D
pairs and the D2D pairs could reuse the uplink resources of
the CUE, from which the RB set is represented as K =
{1, 2, ..., k}. Since D2D pairs multiplex the uplink transmis-
sion resource with cellular users, causing mutual interference
that is experienced between CUEs and D2D pairs. The key
parameter signal to interference plus noise ratio (SINR) should
be analysed respectively.
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Fig. 1. The system framework of D2D communications.

If CUE share its resources with D2D pairs, it will suffer
interference from the D2D pairs. we define the SINR of the
mth CUE at the kth RB as:

γCm =
pCm · gCm,bs

σ2 +
∑N
i=1 p

D
i · gCi,bs

(1)

where pCm is the mth CUE uplink transmission power on the
kth RB while pDi specifies the transmission power of ith D2D
pairs on the kth RB. gCm,bs and gCi,bs indicate the channel gain
on the kth RB from BS to mth CUE and ith D2D transmitter
respectively. σ2 is the zero-mean additive white Gaussian noise
(AWGN) power variance.

Similarly, when the D2D pairs share the kth RB, the
interference is caused by reusing the RB from the co-channel
mth CUE. The SINR of the ith D2D pair at the kth RB is
denoted as:

γDi =
pDi · gDi,i

σ2 + pCmg
C
m,i +

∑N
j=1,j 6=i p

D
j · gDj,i

(2)

where pDi specifies the transmission power of ith D2D user
on the kth RB. gDi,i, g

C
m,i and gDj,i, respectively, represent the

link gain of the channel over the kth D2D link, from cellular
transmitter m to D2D receiver i, and from D2D transmitter j
to D2D receiver i, communicating over the kth resource block.
g is the gain from the transmitter to the receiver, which can

be expressed as follows:

g = 10(−PL−shadowing)/10 (3)

PL is the path loss between the transmitter and receiver.
In this paper, we consider the system performance, including

system data rate and system energy efficiency (EE), where
D2D users and CUEs coexist. Since the premise of the power
control scheme is to guarantee the QoS of cellular users,
the resource allocation and transmission power of cellular
users are given and fixed. Therefore, based on the above
description, we aim to maximise the system energy efficiency
while guaranteeing the minimum QoS requirements of all
users.

The joint optimisation resource allocation and power control
problem can be formulated as the maximisation of the system

energy efficiency under the QoS constraints of all CUEs and
D2D users, which can be realised by solving the problem 4:

arg max
P,k

K∑
k=1

{
log2

(
1 + γCm

)
+
∑
i∈<k

log2

(
1 + γDi

)}
S.t. γCm ≥ τ0

0 ≤ pDi ≤ pmax,∀i, k

(4)

where pmax is the maximum transmission power for each D2D
pair and τ0 is the minimum SINR of CUEs. It is obvious that
pDi is the objective function as increasing the transmit power
of D2D will cause more interference to other D2D user pairs
and CUEs. If decrease the transmit power, it will decrease the
overall throughput of the system.

The maximum data transmission rate in bits per second for
each D2D pair is:

r =
B

2
log

(
1 +

PC |h|2

BN0

)
(5)

where B is the channel bandwidth and the one-half factor is
the natural result of consuming two slots for transmission. PC
is the transmission power for each cellular user. N0 stands for
the power spectral density of the AWGN channel.

h is the channel coefficient which is expressed as:

|h|2 =
|h0|2

PLC · dϕ
(6)

where h0 follows a complex normal distribution CN (0, 1) and
PLC is the path-loss constant. ϕ is denoted as the path-loss
exponent.

The total power consumption during the uplink transmission
is:

P = PCC + PC (7)

where PCC is the circuit power of each cellular user, and the
value of PC is the same for all the cellular users.

Therefore, the energy efficiency formula is denoted as:

EE =
r

P
=

B
2 log

(
1 + PC |h|2

BN0

)
PCC + PC

(8)

III. DEEP REINFORCEMENT LEARNING ALGORITHM FOR
RESOURCE ALLOCATION AND POWER SELECTION

In our settings, a 500-meter radius single cell with the eNB
locates in the centre of the cell while CUEs and D2D users
are distributed randomly in the cell. The default number of
CUEs and D2D pairs are 20 and 10, respectively. Snapshot
for the distribution of CUEs and D2D Users in a single
cell is illustrated in Fig. 2. We abstract available orthogonal
communication bands as the communication resources, each
resource is considered as an ideal non-interfering block. There
are 25 resource blocks in default, which is larger than the
number of CUEs while is less than the total number of users
in the cell. Under such context, there are at least 5 resource
blocks that are needed to be shared with other users, which
will cause interference. Each CUE will be assigned with one
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Fig. 2. Snapshot for CUEs and D2D users distribution in the cell with radius
500m where M = 20 and N = 10.

static resource block, while D2D users can be assigned with
a new resource block based on the policy.

Similar to [30], the minimum QoS requirements for cellular
users and D2D users are set to be 0 and 5 dB, respectively. In
the proposed algorithm, the actor-network of PPO is a neural
network with three hidden layers. The number of neurons in
the PPO hidden layers are 64, 128, and 64, respectively, and
the neurons are activated by the Rectifier Linear Unit (ReLU)
function. The hyperparameters of our algorithm are listed in
Table. I.

A. Reinforcement Learning

As the resource allocation is non-convex and non-linear,
the reinforcement learning implements agents to interact with
the environment constantly to find the optimal policy, which
could be a feasible solution for the optimisation problem.
Reinforcement learning is based on the Markov Decision
Process (MDP). The standard MDP can be represented by a
five-tuple < S,A, P,R, γ > where S, A and R denote the sets
of states, actions and rewards. P is the transition probability,
describing the probability when the agent takes the action from
the state s to the new state s′. γ is the discount factor which
γ ∈ (0, 1).

Each agent learns and makes the decision by interacting
with the environment, and a strategy π, which is defined as the
process of choosing actions from the initial state, is updated
to obtain the optimal policy.

The policy is a function that decides the action selection
with the given state. V π(s) denotes the state-value function,
which denotes a cumulative discounted reward.

V π(s) = Eπ

[∑
t=0

γtrt (st, at) | s0 = s, π

]

= Eπ

[
r (s, at) + γ

∑
s′∈S

P (s′ | s, at)V π (s′)

] (9)

The optimal policy V ∗(s) satisfies the Bellman equation
and is the maximum value of cumulative discounted reward:

V ∗(s) = max
a∈A

{
Eπx

[
r(s, a) + γ

∑
S′∈S

P (s′ | s, a)V π
x

(s′)

]}
(10)

We use the MDP to find the optimal policy which con-
tributes to the resource management scheme in D2D commu-
nication cellular networks.

The basic parameters of our learning system are as follows:
• Agent
In this system, eNB is able to observe the communication

related information as a whole and is responsible for allo-
cating communication resources. Therefore, eNB is trained to
manage the cell communication information as an agent. In
this mode, the observations and the actions of the agent are
the sets of all D2D pairs. The eNB can observe the global
information and give a global decision, which is in the form
of an array of observations or actions for or from each D2D
transmitter. For the independent mode algorithm that is used
to test and validate, each D2D user is the agent. Different from
the eNB agent, global information can be observed by each
D2D user, and individual actions will be made by each agent.
After all the decisions are made, the actions will be made to
the environment to obtain a new state.
• State
At time t, the mth CUE state smt ∈ St contains the

information of assigned resource block assigned to each D2D
agent in t − 1, the user’s QoS satisfaction degree. The state
can be defined as:

sm(t) = {γDi , P
m,k
inter, ξ

m(t)} (11)

which is a set of D2D link SINR on kth resource block. Pinter
is defined as:

Pm,kinter = pCn g
C
n,i +

N∑
j=1,j 6=i

pDj · gDj,i (12)

A continuous variable ξm(t) representing the user’s QoS
satisfaction degree is computed by:

ξm(t) =

{
Rm(t)
Rmin

Rm(t) < Rmin

1.0 Rm(t) ≥ Rmin

(13)

where Rm(t) represents the system throughput of the mth
CUE at time t. Rmin is the minimum throughput requirements
of the mth CUE. Rm(t)/Rmin denotes the QoS satisfaction
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degree of the mth CUE, and Rm(t)/Rmin = 1.0 represents
that the system throughput of the mth CUE achieves basic
QoS satisfaction degree.
• Action
In our algorithm, the agent needs to determine the power

transmission and communication resource allocation strategy
for optimising the system energy efficiency while ensure the
QoS requirement of CUEs. The action is a set of transmission
power decisions for each D2D transmitter, which is defined
as:

am(t) = {ap(t), ak(t)},∀p ∈ P,∀k ∈ K,∀n ∈ N (14)

Where P represents the power level set from which the D2D

transmitter can choose, K stands for the available resource
block, and N stands for the total number of D2D pairs.
• Reward Function
In the considered optimisation problem, the goal is to

achieve the maximum system energy efficiency while reducing
interference on cellular users sharing the same resource block.
Therefore, the violation of the last rule should be negatively
correlated with the value of the reward function while posi-
tively correlated with the system throughput.

The reward function is defined as:

r(t) = α1

∑
n∈N

(
IQoS
n (t)

)
+ α2

∑
n∈N

(
Iself
n (t)

)
+

α3

∑
n∈N

(
Iswitch
n (t)

)
+ EE

(15)

where part 1 is the reward of the overall system throughput,
part 2 indicates the penalty term of the unsatisfied latency and
unsatisfied reliability of D2D link, part3 and part 4 are the
cost functions in terms of the unsatisfied minimum sum data
rate requirements of cellular link and D2D link, respectively.
Where EQoS contains information about whether the QoS of
the cellular user device in the same resource block satisfies
the minimal requirement γmin. It can be defined as:

In(t) =

{
0 γCm ≥ γmin
1 γCm < γmin

(16)

If the SINR of the cellular user is less than the minimum
requirement, a punishment factor would be added for the
learning process of the reinforcement learning algorithm.

Normally, for the reinforcement learning algorithm, it is not
wise to subtract a constant value in the reward function, which
may influence the agent to find a strategy to end the game as
fast as possible. In our case, however, the reward is not sparse,
and the agent can get a reward on each step. In addition, we
fix the number of steps for each episode, and therefore, it is
plausible to subtract a constant value from the reward function,
which may lead to a faster rate of convergence.

B. Deep Q-Network

Deep Q-Network integrates neural networks on the basis of Q-
learning. The neural network is used as an approximation to
find the optimal behaviour value function, which is expressed
as:

Q (st, at; Θ) ≈ Q (st, at) (17)

Θ is the neural network weight and st and at specify the states
and actions respectively.

In the iterative process, the neural network minimises the
loss function by updating the neural network weights:

Loss(θ) =
1

n

n∑
at=1

(y −Q (st, at))
2 (18)

where
y = rt + maxQ (st, at) (19)

rt is the corresponding reward.
Deep Q-Network algorithm could store the previous experi-

ences (state, action and reward) into memory. In each learning
process, the random extraction of previous experiences could
disrupt the correlation relationship between each experience.
C. Proximal Policy Optimisation Method

Proximal Policy Optimisation (PPO) is an on-policy and
model-free algorithm which belongs to the policy gradient
methods. PPO proposes a new objective function that can
be updated in multiple training steps in small batches, which
solves the problem that the step size is difficult to determine
in the Policy Gradient algorithm. Moreover, PPO can support
continuous input and output at a fast convergence speed. The
detailed PPO algorithm is shown in Algorithm 1.

TABLE I
SIMULATION PARAMETERS

Parameter Definition Value
M Number of CUEs 20
N Number of D2D pairs 10
K Number of Resource blocks 25
P Maximum Transmission Power 250 mW
pc Circuit Power 150 mW
d Distance 50 meters
B Bandwidth 10 MHz
N0 Noise −174 dBm/Hz

ρLBS Base Station Path-loss Constant 15.3 + 37.6 logd10
ρLUser User Path-loss Constant 28 + 40 logd10
ϕ Path-loss Exponent 4
|h0| The Channel Coefficients CN (0, 1)
γPPO The Discount Factor 0.9
γDQN The Reward Discount 0.99
αActor Learning Rate for Actor 0.0001
αCritic Learning Rate for Critic 0.0002
ε Update Batch Size 32

IV. SIMULATION RESULTS

In this section, the simulation parameters are illustrated in
Table I. The parameters are mostly based on [31], [32] and
[33]. These three articles have achieved great optimisation
results in power control and share relatively similar simulation
parameters. In this paper, we assume there is only one eNB
within the single-cell surrounding by 20 CUEs and 10 D2D
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Algorithm 1 Proposed Algorithm for Resource Block Selec-
tion and Power Control
Initialise the global parameters θp, θv and thread parameters
θp
′, θv ′.

Initialise the game episode k = 0, the step in an episode t = 0,
the update steps Tupdate and maximum steps steps.
Initialise maximum global shared resource allocation episode
counter Kallocate and power selection episode counter
Kpower..
Initialise the action-value function network Q (st, at) with
random weights ω.
Initialise the target network Q (st, at) with weights ω′ = ω.
k ≥ kallocate k in Kallocate

t in steps
Get a(t) by policy π

(
a(t) | s(t); θ′p

)
.

Perform the a(t) and Update the environment
Obtain the immediate reward r(t) and the next state s(t+1).
t = Tupdate Get a(t) by policy π

(
a(t) | s(t); θ′p

)
.

Get advantage estimates A (s(t), a(t); θp, θv).
Update thread parameters θp′ and θv ′ by maximising the PPO
objectives:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

clip (rk (θp
′) , 1− ε, 1 + ε)A (s(k), a(k); θp, θv)

via stochastic gradient ascent with Adam Update global
parameters θp and θv .
k ≥ Kpower k in Kpower

t in steps
Get a(t) using ε-greedy policy from maxQ (st, at).
Obtain the immediate reward r(t) and the next state s(t+1).
Store transition (s(t), a(t), r(t), s(t+1)) to form a experience
replay buffer
Sample random minibatch of transitions (s(t), a(t), r(t), s(t+
1)) from the buffer
Update DQN policy with Equation(19)

pairs sets. The number of available resource blocks is 25, and
all CUEs and D2D pairs move dynamically and randomly in
the area of the cell. It is easy to find out the total number
of CUEs is between the number of D2D pairs and resource
blocks which results in the sharing process between D2D pairs
and CUEs.

Assuming the available resource blocks will be assigned
to the CUEs first, and the remaining resources will leave to
D2D pairs. As for the situation of resource reusing, it only
happens when there is no free resource block. Based on the
calculation formulas given in section II, we have modelled
the D2D pairs communication links and CUEs communication
links with path loss and shadows to simulate the real situation.

As shown in Fig. 3, the learning process of the three
approaches in terms of the reward functions when the number
of D2D users is 10. It can be observed that our proposed
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Fig. 3. Learning process comparisons of algorithms.

approaches greatly outperform the independent mode and the
random one. The independent network is able to find a larger
reward function in the early stage of the training process.
However, it would diverge with more training episodes.

By observing actions of the independent network in each
episode, we found that the independent network is able to
find sub-optimal resource block choices. As this scenario is
generally better than the original resource block assignment,
the reward increases. However, with more training done to
the algorithm, a better choice, an unused resource block or
resource block occupied by a cellular user that is far away
from all the other D2D devices, will come up. However, this is
catastrophic when some D2D devices would choose the same
resource block at the same time, and as they reuse the same
resource block at the same time, the opposite reward would
be delivered to each independent network. Two plausible
solutions are proposed and tested to improve the independent
network:
• By adding negative element when reusing the same re-

source block with other D2D devices and positive element
when the agent is the only D2D device use the resource
block with the reward function.

• By sharing the network parameters for a faster conver-
gence rate.

The first method has similar results as in Fig. 3. This
is due to two main reasons: the more carefully-designed
reward function has a similar element. The reward on whether
reuse the same resource block with other devices can directly
influence the throughput of all devices that use this resource
block, and all the agents choose the same action at the same
time without communication. This means that the element is
redundant and cannot help to solve the convergence problem.
The second method, similarly, cannot convergent and will lead
to a stable, sub-optimal value. As the definition of the Markov
process, the action is abstracted and regarded as an integrated
input to the environment at the same time. Therefore, even
with the same parameters, agents have great chances when
finding an optimal resource block and choose the resource
block as its action at the same time, which would lead to an
opposite reward.
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Fig. 4 demonstrates the reward of D2D users with dif-
ferent algorithms versus the number of D2D users. In our
proposed algorithm, it can promote D2D users to utilise the
remaining available resources block to D2D users that are
in high interference areas, such as a D2D pair that is close
to other CUEs. However, it is worth noting that D2D users
have limited resource blocks and when the number of D2D
users increases, the higher chances the resource blocks will
need to be reused by more than one user causing greater
interference. For independent assigning mode, such an increase
in the number of D2D users will cause greater chaos in the
information delivered by the reward function, which will lead
to a further drop in the performance.
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Fig. 4. Reward of D2D users versus the numbers of D2D users.

Fig. 5 shows the influence of the distance between the
D2D pairs on the system throughput of different algorithms.
It can be observed from the figure that the system throughput
of all algorithms decreases with larger maximum D2D pairs
distance. This means that a higher D2D pairs distance will
directly affect the energy efficiency by affecting the system
throughput, which is the denominator of equation (8). In
addition, the transmission power of the D2D transmitter has
to be increased to guarantee the quality of service, which will
also affect the energy efficiency by increasing the numerator of
the equation. Therefore, the selection of the maximum distance
of D2D communication should not be too large, which may
lead to low energy efficiency, nor being too small which the
serviceability of D2D communication will be impaired.

V. CONCLUSION

To maximise the overall system throughput and energy
efficiency in D2D communications, we have formulated the
optimisation problem into a joint mode selection, considering
both resource assignment and power control with the con-
straints of QoS requirements. Deep Q-Network is proposed
for resource block allocation, and a proximal policy optimisa-
tion (PPO) algorithm is proposed based on MDP for energy
control. With the guidance of the deep learning algorithm,
D2D could make intelligent selections and thereby improve
the performance of the cellular network under the premise of
ensuring the communication quality of cellular users, reducing
interference and improving system throughput. Experimental
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Fig. 5. Overall system throughput for different D2D users distances

results show that the algorithm has better performance than
the traditional algorithm. The simulation results show that the
proposed solution can efficaciously guarantee the quality of
service and improve the overall throughput, which outperforms
other existing algorithms by having better convergence and
less executing time.
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