
Spiking Mean Field Multi-Agent Reinforcement
Learning for Dynamic Resources Allocation in D2D

Networks

1st Pei-Gen Ye
School of Computer Science

and Cyber Engineering
Guangzhou University

Guangzhou, China

ypgmhxy@gmail.com

4th Rong-Fang Xiao
School of Computer Science

and Engineering
Central South University

Changsha, China

summerrobert2018@gmail.com

2th Wei Liang
School of Computer Science

and Engineering
Central South University

Changsha, China

eeveeweily@gmail.com

5th Zhong-Yong Guo
School of Computer Science

and Engineering
Central South University

Changsha, China

bensnowguo@gmail.com

3th Qiang Lu
School of Computer Science

and Engineering
Central South University

Changsha, China

luqiang@jridge.com

6th Kai-Xiang Sun
School of Computer Science

and Engineering
Central South University

Changsha, China

sundevin806@gmail.com

Abstract—Device-to-device (D2D) technology has been widely
used to alleviate the mobile traffic explosion due to its ability
of direct communications between proximal devices. However,
in practice, available spectrums are limited and the number of
D2D and cellular users are rapidly increasing, which greatly
decreases the efficiency of resource allocation. For this propose,
we train spiking neural network (SNN) with deep reinforcement
learning for channel selection and power control. At the same
time, we use spatio-temporal backpropagation to accelerate SNN
training. When the number of D2D users increases dramatically,
the learning rate becomes intractable due to the curse of the
exponential growth of action space. Therefore, we apply mean
field multi-agent reinforcement learning (MFRL) to approximate
interactions within the D2D users. After that, we combine
different reinforcement learning algorithms with MFRL. The
simulation result shows that, compared with actor-critic (AC) and
proximal policy optimization (PPO), spiking actor-critic (S-AC)
and spiking proximal policy optimization (S-PPO) can achieve
faster convergence rate, higher access rate and better time-
averaged overall throughput as well as lower collision probability
even when the action space is increased. Besides, when the
number of D2D users increases, our spiking mean field proximal
policy optimization (SMF-PPO) can achieve better performance
than AC, PPO, S-AC and S-PPO.

Index Terms—Spiking neural network, Deep reinforcement
learning, Multi-agent reinforcement learning, Device-to-device,
Channel selection, Power control.

I. INTRODUCTION

This work was supported by the overseas joint training program for
postgraduates of Guangzhou University.

NOWADAYS, the rapid growth of mobile devices brings

great challenge to the existing wireless communication

system. Fortunately, with the development of device-to-device

(D2D) technology, mobile devices can forego routing informa-

tion through the base station (BS) and send the information

directly to neighboring devices. Compared with traditional

cellular technologies, D2D technology can not only effectively

release the burden on the BS through traffic offloading [1], but

also has the potential to increase the data rate and network

spectrum efficiency, while reducing network latency [2] for

users who are in close proximity.

Generally, the communication of D2D networks reuse the

spectrum of the cellular network. In actual applications, there

are two main reusing modes: namely overlay mode [3], [4] and

underlay mode [5], [6]. In the overlay mode, a small part of the

cellular spectrum licensed to the cellular operator is reserved,

and the D2D users (D2DUs) is only allowed to transmit data

on the reserved spectrum. In this mode, D2DUs and CU

users (CUs) use different spectrum resources. Although few

interference, it is not only difficult to allocate the spectrum

reasonably for CUs and D2DUs, but also reduces the effective

utilization rate of the spectrum. In the underlay mode, CUs and

D2DUs are allowed to transmit on the same spectrum, and the

spectrum remains indivisible, which means that D2DUs must

reuse the resources allocated to the CUs, thereby improving

spectrum utilization. Compared with the overlay mode, the

underlay mode may have interference between the D2D pairs

and the CUs, but it do not need additional cellular spectrum

division. The key to this mode is how to deal with the harmful
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interference which has a negative impact on the performance

of the D2D network when too many D2DUs reuse the same

channel [7]–[10]. On the other hand, due to the limitations of

energy efficiency and battery life [11], [12], the performance

of D2D communication depends to a large extent on proper

transmit power control. Therefore, it is important to allocate

appropriate transmit channel and power for D2DUs to make a

tradeoff [13] between the interference mitigation and effective

energy utilization.

In recent years, many research solutions have been proposed

to solve the problem of channel selection and power control

in D2D networks. For example, Yuan et al. [14] proposed the

local CSI-based distributed channel-power allocation scheme

to enable D2DUs to perform channel selection and power

updating independently and iteratively. In [15], a joint power

and channel allocation algorithm has been proposed, where

the optimal power allocation is derived on each sub-channel

and the optimal channel allocation scheme is obtained by the

Hungarian algorithm. In particular, Abrardo et al. [16] and Lyu

et al. [17] used game theory based distributed algorithms to

maximize the spatial reuse and optimize the channel allocation

for the D2D network. However, the resource allocation, at any

time, for one D2D user is explicitly reliant on the state of

all other D2DUs in the network at that time. And this is an

intractable mixed integer non-linear programming (MINLP)

problem, the above methods can only find the near-optimal

solutions, and there are many obstacles in the process of

applying to the actual scene.

Fortunately, the emergence of multi-agent reinforcement

learning (MARL) [18], a sub-field of reinforcement learning

(RL), has proved to perform exceptionally well on extremely

complex control tasks and MARL makes it possible to learn

the best strategy for D2D networks. In MARL, each agent

maximizes the cumulative return that can be obtained during

the learning process, which is affected by the changes in

the global state of the environment brought about by the

joint actions of other agents. Li et al. [19] proposed a

distributed spectrum allocation framework that shares global

historical status and policies during centralized training to

further optimize system performance. At the same time, a fully

decentralized soft MARL algorithm has been proposed in [20],

which extends the soft actor-critic framework to to find the

optimal policy. Besides, in order to minimize the long-term

system cost in energy-harvesting D2D network, Huang et al.
[21] proposed multi-agent deep deterministic policy gradient.

The optimality of RL, however, comes at a high-energy cost.

Given that the growing complexity of environment is hard to

be continuously offset by equivalent increases in on-board en-

ergy sources, there is an unmet need for low-power solutions.

With the development of the third generation artificial neural

network, namely spiking neural network (SNN) [22], more and

more scholars begin to apply it to different fields [23]. SNN

is an emerging brain-inspired alternative architecture to deep

neural networks in which neurons compute asynchronously

and communicate through discrete events called spikes. SNN

has two main advantages: first, it can reduce energy consump-

tion by transmitting information through a single bit; second,

it has high robustness because of the high connection ratio of

neurons and the existence of membrane potential threshold.

Although the above methods can get the optimal channel

and power, there are still two aspects worth researching. First,

the optimality of RL comes at a high-energy cost. Considering

that the increasingly complex situation of D2D network is

difficult to continuously offset by the same increase in on-

board energy, there is an unmet need for low-power solutions

for resource allocation. With the development of the third

generation artificial neural network, namely spiking neural

network (SNN) [22], more and more scholars begin to apply

it to different fields [23].

SNN is an emerging brain-inspired alternative architecture

to deep neural networks (DNN) in which neurons compute

asynchronously and communicate through discrete events

called spikes. SNN has two main advantages: first, it can re-

duce energy consumption by transmitting information through

a single spike; second, it has high robustness because of the

high connection ratio of neurons and the existence of mem-

brane potential threshold. To address the limitations of SNN

in solving high-dimensional continuous control problems, one

approach is to combine the energy-efficiency of SNN with

the optimality of deep reinforcement learning (DRL) [24].

Therefore, a popular SNN construction method [25] is to

directly convert a trained deep neural network (DNN) into

a SNN using weight and threshold balance. However, this

method usually causes the performance of the SNN to be lower

than that of the corresponding DNN, and also requires a lot of

time for inference that significantly increases the energy cost.

To overcome this, a hybrid learning algorithm for mapless

navigation of mobile robots was proposed by Tang et al. [26],

in which DRL is used to train SNN. They used the rate-

coded inputs to learn the optimal policy in static environments.

However, the optimality of the policy is highly dependent on

the coding accuracy of a single spike neuron with limited

representation capabilities, making the algorithm unsuitable

for complex tasks.

Another aspect worth considering is that with the increase

of optional power level and the number of D2DUs, the

environment state and action space increase rapidly, which not

only affects the convergence of the algorithm, but also makes

many D2DUs focus on local optimal value. For this purpose,

MADDPG [27] learns distributed policy in continuous action

spaces, and COMA [28] utilizes a counterfactual baseline to

address the credit assignment problem. However, the question

of how to make the network maintain high performance in the

case of multiple D2DUs still remains open.

In this paper, we propose to train the SNN combine with

the MARL for dynamic resource allocation in D2D networks.

This co-learning enabled synergistic information exchange be-

tween the SNN and MARL, allowing them to overcome each

other’s limitations. For this purpose, firstly, the spatio-temporal

backpropagation (STBP) [29] has been applied to accelerate

SNN training combining both the spatial domain (SD) and

temporal domain (TD) in the training phase. Then, mean field
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multi-agent reinforcement learning (MFRL) has been used to

solve the problem of D2D network performance degradation

for the first time. Thirdly, we combine the spiking mean field

multi-agent reinforcement learning (SMFRL) with different

DRL algorithms such as actor-critic (AC) [30] and proximal

policy optimization (PPO) [31] to choose optimal channel and

power in D2D networks. The rest of this article is organized

as follows. In Section II, we introduce the system D2D model.

In Section III, we describe the proposed algorithm in detail.

Simulation results are provided in Section IV, followed by our

conclusions in Section V.

II. SYSTEM MODEL

A. SYSTEM COMPONENTS
In this paper, we considered a decentralised network model

[32] that a set of cellular users (CUs) i ∈ I = (1, 2, ..., I)
and D2D users (D2DUs) j ∈ J = (1, 2, ..., J) randomly

placed within the coverage area of the BS, as illustrated

in Fig. 1. In this model, CUs and D2DUs use the same

radio spectrum, which means that D2DUs must reuse the

resources allocated to the CUs in order to use spectrum more

efficiently. The decentralized setting means that each D2D user

must make decisions without knowing the decisions of other

D2DUs, which will cause some D2DUs to access one channel

at the same time, called ‘collision’. In order to simplify

the simulation, we assume that in this collision process, all

conflicting users do not have the capacity to transmit signal.
Each CU is allotted a single up-link channel at each time

slot t, and each D2D user consisting of a transmitter (D2D-

Tx) and receiver (D2D-Rx). CU and D2DUs can only reuse a

single channel at any time. At time slot t, the transmit power

of the ith CU is pit and the transmit power of jth D2D-Tx is

pj,lt which has L levels denoted as

pj,lt =
pmax

L
l (1)

where pmax is the maximum transmit power of D2DUs. The

channel gain gi,Bt between CU i and the BS is defined as

gi,Bt =
∣∣∣hi,B

t

∣∣∣2 βi,B , where hi,B
t is the short-scale channel

coefficient of the channel between CU i and the BS, and

βi,B represents the large-scale fading components including

path-loss and log normal shadowing. Similarly, the channel

gains over the jth D2D pair, from D2D pair j to the BS, and

from CU i to D2D pair j are defined as gjt , gj,Bt and gi,jt ,

respectively. Therefor, the signal to interference plus noise

ratio (SINR) of the ith CU from the BS can be defined as

ξit =

⎧⎨
⎩

pitgi,B
t

σ2
t

if collision or ith channel not selected

pitgi,B
t

pj,l
t gj,B

t +σ2
t

otherwise,

(2)
where σ2

t is the additive white Gaussian noise power. And the

SINR of the jth D2D pair is defined as

ξjt =

{
0 if collision occurs

pj,l
t gj

t

pi
tg

i,j
t +σ2

t

otherwise.
(3)

Fig. 1. D2D network model

TABLE I
SUMMARY OF MODEL NOTATION

Notation Description
I Number of CUs (Channels)

J Number of D2DUs

L Number of power levels

gjt Channel gain of the jth D2D user

gi,Bt Channel gain from the ith CU to BS

gj,Bt Channel gain from the jth D2D user to BS

gi,jt Channel gain from the ith CU to the jth D2D user

pi Transmit power of the i CU

pj,lt The lth power level of the jth D2D user

pmax Maximum transmit power of D2DUs

ξit SINR of the ith CU

ξjt SINR of the jth D2D user

ξimin Minimum SINR of the ith CU

ξjmin Minimum SINR of the jth D2D user

σ2
t Additive white Gaussian noise power

W Channel bandwidth

B. PROBLEM FORMULATION
The channel selection and power control problem has the

objective of maximizing the network throughput with minimal
interference to the CUs and D2DUs to keep their SINR above
certain threshold, which can be solved through each D2D-

Tx selecting the optimal channel i and transmit power pj,lt .
Consequently, the optimization problem can be formulated as

max
i∈I,p

j,l
t

∑
i∈I

∑
j∈J

W
[
log2

(
1 + ξit

)
+ I(i, j)log2

(
1 + ξjt

)]
(4)

s.t. ξti ≥ ξimin, ξtj ≥ ξjmin, ∀i ∈ I, ∀j ∈ J∑
i

f(i, j) ≤ 1,
∑
j

f(i, j) ≤ 1, ∀i ∈ I, ∀j ∈ J (5)

where W is the channel bandwidth, ξimin and ξjmin are the

minimum SINR requirements for CU i and D2D j, respec-

tively. f(i, j) is an indicator function that equals 1 if D2DU
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j reuses the ith channel and 0 otherwise. Constraints ensure

that SINR minimums are kept and no channel will be used by

multiple D2DUs as well as no D2DU selects multiple channels

at the time slot t. The notation of our model is summarized

in Table I.

III. METHODOLOGY

In this section, spiking mean field multi-agent reinforcement

learning for D2D network will be illustrated in several parts.

First, we describe the multi-agent environment of D2D net-

work. Then, we illustrate how SNN is combined with DRL.

In the third part, we describe spatio-temporal backpropagation

method to accelerate the training of SNN. The final part

describes the mean field approximation which can improve

the performance under multi-agent D2D environment.

A. Multi-agent Environment
In the multi-agent D2D environment, agents are represented

by the D2DUs. At that time step t, the state of the D2D
network st is represented by the joint SINR of all CUs i.e.
st = [ξ1t , ξ

2
t , ..., ξ

I
t ] . In the D2D environment, since the chan-

nel transmits status information to each D2D user, the status
is observable for each user. At time slot t, the jth D2D user
takes an action aj

t which consists of two separate decisions:

the transmit channel i and power pj,lt , i.e. ajt = [i, pj,lt ]. Since
the number of channels is I and the number of transmit power
levels is L, there are I × L actions in the D2D action space.
Finally, the reward of jth D2D user are computed as

rjt =

{
−ε, if (5) are violated∑

i∈I log2
(
1 + ξit

)
+ I(i, j)log2

(
1 + ξjt

)
, otherwise

(6)

where the punishment ε was selected over 0 to entice con-

vergence rapidly [24]. This reward function falls in the mixed

setting as the majority of the reward is identical for each agent

with each agent receiving additional reward based on their own

SINR.

B. The Combination of SNN and DRL

As shown in Fig. 2, the combination algorithm of SNN and

DRL includes two parts: SNN based actor network and DRL

based critic network, illustrated in [26]. At time slot t, the actor

network generated an action ajt for jth D2D user according

to the state st. After that, the critic network predicted the

action-value, which in turn optimized the actor network. The

structure of the critic network is determined by the selected

DRL algorithm.

The SNN based actor network consists of a K-layer SNN, a

neural encoder, and a neural decoder [33]. The neural encoder

and encoder can be seen as the first layer (input layer) and the

last layer (output layer) of a multi-layered and fully-connected

SNN which consists of neurons. The current-based leaky-

integrate-and-fire (LIF) model is used to simulate spiking

neurons in this model. There are two phases of LIF dynamics,

dropping the j for notational simplicity, first, integrating the

presynaptic spikes ot into current ct. Second, integrating the

current ct into membrane voltage vt, as described lines 5 to 7

in Algorithm 1. dc and dv are the current and voltage decay

factors, function T (vt) is an indicator function that equals 1

if vt ≥ Vth and 0 otherwise. Thus, the neuron fires a spike if

its membrane potential exceeds Vth which is set empirically.

The neural encoder encodes each dimension of the D2D

state st as the activity of a neuron population Ei, i ∈ 1, ..., I .

Neuron populations E has Gaussian receptive field (μ,σ)
which are task-specific trainable parameters. For neuron pop-

ulation Ei , the receptive field is defined as (μi, σi). The

encoder calculated the activity of the population in two phases:

first, each state dimension ξit is transformed into the stimula-

tion intensity Ai
Ei of each neuron in the population Ei,

Ai
Ei = e

− (ξit−μi)2

2(σi)2 (7)

Second, we use probabilistic encoding to generate the spikes

of the neurons in E = [E1, ..., EI ], where spikes X for all the

neurons were generated at each time slot with the probabilities

defined by AE = [A1
E1 , ..., AI

EI ]. The encoding process can be

written as

X = Encoder(st,μ,σ) (8)

where the generated spikes signal is sent to the second layer

of the SNN.

The neural decoder comprised of neuron populations, which

decodes the output activities into real-valued actions. The

receptive field of the neurons of decoder is formed by its

connection weights, which are learned as part of the training.

Each neuron population Du represented a dimension of the

action au
t , u ∈ 1, ..., U . After every T time slots, the spikes

of neurons in D = [D1, ..., DU ] were summed up at layer K,

denoted as

sc =

T∑
t=1

oK
t (9)

And fru is the uth output population firing rate of fr, which

is calculated by the uth dimension of sc

fru =
scu

T
(10)

After that, the uth dimension action au
t returned as the

weighted sum of the fru (lines 13 in Algorithm 1).

C. Spatio-temporal Backpropagation for SNN Traning

In this work, we apply spatio-temporal backpropagation

(STBP) algorithm [26] to train high-performance SNN based

actor network for D2D system. The STBP combines the layer-

by-layer spatial domain and the timing-dependent temporal

domain. The goal of D2D user is to find the action policy

π, which dimension is equal to the dimension of action a.

Therefore, the gradient of loss relative to the policy ∇πL
shown in next part is used to train the parameters of neural

decoder, SNN and neural encoder. The parameters of each

output dimension u, u ∈ 1, ..., U are updated independently:
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Fig. 2. The combination of SNN and DRL

�fruL =�πuL · Wu
d

�Wu
d
L = �fruL·fru, �budL = �fruL

(11)

where πu is the uth dimension of policy π. Wu
d and bud are

decoding weight vectors for the uth action dimension.

When the gradient of neuron decoder is updated, the gra-

dient of each layer of SNN will continue to be updated from

back to front. In order to solve the non-differentiable problem

of SNN, the Gaussian cumulative distribution function [29] is

chosen by us as a pseudo-gradient function to approximate the

gradient of the spike:

z(v) =
1√
2πσ

e−
(v−Vth)2

2σ , (12)

where σ determines the curve steepness. We can regard the

z(v) as an indicator function that equals 1 if |v − Vth| < ε
and 0 otherwise. ε is the threshold window for passing the

gradient. In every T time slots, the gradient derivation of K-

layer SNN includes two cases: t < T and t = T .

Case 1: for t < T .

In the output population layer K, the gradient flow through

the SNN can be shown as

�scL =
1

T
· �frL, �oKt L = �scL (13)

where the oKt is the presynaptic spikes, i.e., the population

output of layer K. Then, for each layer from k = K to 1:

�vkt L = z(vkt ) · �okt L+ dv(1− ok
t ) · �vkt+1

L

�ckt L = �vkt+1
L+ dc�ckt+1

L

�ok−1
t

L =Wk · �ckt L

(14)

where Wk denotes the weight matrices of SNN layer k.

Case 2: for t = T .

Calculate the gradient loss of the SNN parameters for each

layer k by collecting the gradients backpropagated from all

time slots. In the output population layer K:

�WkL =

T∑
t=1

ok−1
t · �ckt L, �bkL =

T∑
t=1

�ckt L (15)

where bk denotes the bias of SNN layer k.

After the SNN is updated, the neuron encoder will be

updated by directly backpropagating the Ai
Ei of each input

population:

�μiL = �Ai
Ei
L ·Ai

Ei · ξ
i − μi

(σi)2

�σiL = �Ai
Ei
L ·Ai

Ei · (ξ
i − μi)2

(σi)3

(16)

All the parameters of SNN based actor network will be updat-

ed after every T timesteps and the detailed backpropagation

derivation can be found in [33].

D. Mean Field Approximation for D2D network

A D2D user needs the status and rewards of all other

CUs and D2DUs in the D2D network to complete their own

resource allocation, which greatly reduces the performance

of D2D network. In order to solve this problem, mean field

approximation (MFA) [34] has been used in this D2D model.

The aim of MFA is replacing the effect of all other agents

with an mean effect, which convert many agent interactions

into two agent interactions. The Q-function of the jth D2D

user is decomposed using only the pairwise local interactions:

Qj(s, aj) =
1

N

∑
k∈N (j)

Qj(s, aj , ak) (17)

where N (j) is the index set of the neighboring agents of the

jth agent and N = |N (j)| is the number of neighbors.

We use the one-hot encoding to indicate one of the I × L
possible D2D actions: aj � [aj1, ..., aj

I×L]. The mean action aj
is calculated based on the neighborhood N (j) of D2D user j

aj =
1

N

∑
k∈N (j)

ak (18)

where ak is consisted of aj and a fluctuation δ as ak = aj+δ.

Besides, aj � [aj
1, ..., aj

I×L] can be regarded as the empirical

distribution of the actions that taken by neighbors of jth D2D

user. According to the above formula and Taylor’s theorem,

an approximate expression [34] of Qj(s, aj) is proved

Qj(s, aj) ≈ Qj(s, aj , aj) (19)

At time slot t, given an experience ejt = (st, akt , r
j
t , s′t), the

mean field Q-function is updated by MFA in a recurrent way

as
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Qj
t+1(st, aj

t , aj
t ) = (1−α)Qj

t (st, aj
t , aj

t )+α[rjt+γvjt (s
′
t)] (20)

where α denotes the learning rate and γ denotes the discount

factor which represents the uncertainty of the sender about

the future rewards. And vjt is the mean field value function

for D2D user j defined as

vjt (s
′
t) =

∑
ajt

πj
t (a

j
t |s′t, ajt )Eajt

[Qj
t (s
′
t, aj

t , aj
t )] (21)

where πj
t denotes the action policy for D2D user j. In spiking

mean field actor-critic (S-MFAC),the D2D user j is trained by

minimizing the loss function:

L(φj) = (yj −Qj
t (st, aj

t , ajt ))
2 (22)

where φj represents the weights in SNN based actor network.

yjt = rjt + γvjt (s′t) is the mean field value calculated with the

weights φj
− for target network. The policy πj

t parameterized

by θj in DRL based critic network is trained by

∇θjL ≈ ∇θj logπj
tQ

j
t (st, ajt , aj

t )|ajt=πj
t (st) (23)

The proof of convergence can be found in [34] and the

pseudocode of S-MFAC under the D2D environment is shown

in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we conduct simulations to examine the

proposed schemes. In our model, D2DUs are randomly located

in a circular space with a radius of 500m and the maximum

D2D transmit power pmax and noise power 2
N are respectively

set to be 30 dBm and -174 dBm, the transmit power of CUs

is 25dBm. The SINR minimum for CUs ξimin and D2DUs

ξjmin is 3dB and the bandwidth W is 10MHz. Except where

noted, the number of channels I and the number of D2DUs

J are set to be 30 and 10,respectively. The actual effects

of finite-precision digital processing is taken into account,

which truncates the received SINR by a maximum value of

30 dB [35]. Each simulation result is the average of the

results obtained from 20 randomly initialized independent

experiments, including topology and channel gains.

As for the parameters of the SNN based actor network

and DRL based critic network are similar to [33] and [34],

except for the following. The hidden layer of critic network

is 32 and the learning rates α, τφ, τθ are 1e−4, 1e−3, 1e−3,

respectively. The punishment ε of reward r is 0.2. The number

of neighbors N is 5 and the capacity M of replay buffer R
is 10.

A. Simulation under small action space

In this section, firstly, in terms of the average reward, we

compare the actor-critic (AC), proximal policy optimization

(PPO), spiking AC (S-AC) and spiking PPO (S-PPO) with

spiking mean field AC (S-MFAC) and spiking mean field

proximal policy optimization (S-MFPPO) under the same

Algorithm 1: Spiking Mean Field Actor-Critic (S-MFAC)

for D2D Network

Input: Randomly initialize W, b, Wd, bd, Qφj , Qφj
−

,

πθj , πθj
−

, aj
t=0, and st=0 for j ∈ 1, ..., J .

Input: Initialize μ, σ, N , spikes

X = Encoder(st=0,μ,σ).
1 for t=0, 1... do
2 for j=1,...,J do
3 Drop j for simplicity.

4 for k=1,...,K do
5 Update LIF neurons in layer k:

6 ckt = dc · ckt−1 + Wkok−1
t + bk

vkt = dv · vkt−1 · (1− ok
t−1) + ckt

7 ok
t = T (vkt )

8 end
9 if t % T==0 then

10 Sum up the spikes of output: sc =
∑T

t=1 oK
t

11 for i=1,...,U do
12 Compute the uth dimension of firing rate:

fru = scu

T
13 Compute the uth dimension of action:

au = Wu
d · fru + bu

d
14 end
15 Get action ajt for D2D user j.

16 end
17 end
18 Compute all mean actions at = [a1

t , ...., aJ
t ].

19 Take the joint action a∗t = [a1
t , ..., aJ

t ].
20 Compute the joint reward r∗t = [r1t , ..., rJt ].
21 Get the next state s′t = [ξ1t , ξ

2
t , ..., ξ

I
t ].

22 Store ex = (st, a∗t , r∗t , s′t, at) in replay buffer R.

23 if |R| ≥ N then
24 for j=1,...,N do
25 Sample M experience ex from R.

26 Set yjt = rjt + γvMF
φj
−

27 Update the SNN based actor network by:

28 L(φj) = (yj −Qφj (st, aj
t , aj

t ))
2

29 Update the DRL based critic network by:

30 ∇θjL ≈ ∇θj logπj
tQφj (st, aj

t , ajt )|ajt=πj
t (st)

31 Update the parameters of target networks:

32 φj
− = τφφ

j + (1− τφ)φ
j
−

33 θj− = τθθ
j + (1− τθ)θ

j
−

34 end
35 end
36 end

environment, where I = 30, J = 10, and L = 30. It is

noteworthy that AC, PPO, S-AC, and S-PPO do not contain

any multi-agent principles like inter-agent communication or

credit assignment. D2DUs learn solely based on their own

observations of the environment. In order to improve read-

ability, each plot is smoothed. As can be found in Fig. 3(a),
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S-PPO and S-AC get higher average rewards, reaching 5.19

and 4.39 respectively at time slot 800, while PPO and AC

are only 2.94 and 2.78 respectively. After applying mean field

approximation, S-MFPPO and S-MFAC not only have higher

average reward, but also nearly converge at time slot 450,

while S-PPO and PPO close to convergence at time slot 850

and 1150 respectively. Secondly, we verify the performance of

S-MFPPO and S-MFAC by detecting three indicators of D2D

network [36], namely, colligation probability, access rate and

network throughput. As shown in Fig. 3(b)-(d), S-MFPPO and

S-MFAC also got better performance.

(a) (b)

(c) (d)

Fig. 3. Simulation results under 30 CUs, 10 D2DUs, and 30 power levels.
(a)-(d) represents the performance of algorithms in terms of average reward,
collision probability, access rate and D2D network throughput respectively.

B. Simulation under large action space

It can be found from Fig. 3(a) that there is no significant

difference in convergence rate between S-PPO and PPO when

the action space is small. In order to test the performance

of proposed algorithm under large action space [37] and

demonstrate the representation ability of neural encoder and

decoder, we set L = 900 (other settings remain unchanged)

for D2D network. As shown in Fig. 4(a), S-PPO and S-AC

converge faster than PPO and AC, and also can obtain higher

average reward. As for the colligation probability, access rate

and network throughput, S-MFPPO is still perform better than

others.

C. Simulation under more D2DUs

In this section, the performance of the proposed algorithm

has been tested in the case of a large number of D2D pairs

(J = 30) [38]. Fig. 5(a) shows that the D2D network can

still maintain high performance in the case of 30 D2DUs by

applying MFA. Due to the increase of the number of D2DUs,

the collision probability of each algorithm is close to 1. In

order to express clearly, the collision probability has been

replaced by the specific number of collisions as shown in Fig.

5(b). It can be seen in Fig. 5(a)-(d) that the S-MFPPO can still

(a) (b)

(c) (d)

Fig. 4. Simulation results under 30 CUs, 10 D2DUs, and 900 power levels.
(a)-(d) represents the performance of algorithms in terms of average reward,
collision probability, access rate and D2D network throughput respectively.

maintain high efficiency in the face of more D2DUs, which

proves that it is feasible to solve the D2D resource allocation

problem by combining SNN and MFRL.

(a) (b)

(c) (d)

Fig. 5. Simulation results under 30 cellular users, 30 D2DUs, and 30
power levels. (a)-(d) represents the performance of algorithms in terms of
average reward, number of collisions, access rate and D2D network throughput
respectively.

V. CONCLUSIONS

In this paper, we combine the SNN with DRL to investigate

the joint channel selection and power control problem of D2D

network for the first time. However, as the number of D2D

devices increases, calculating the reward of each device one

by one will bring a large performance loss. To overcome

this issue, we use the mean field multi-agent reinforcement

learning to simplify the influence of multiple D2D devices on

each other, and further improve the efficiency of the algorithm.
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At the same time, we use spatial-temporal backpropagation to

accelerate the training of SNN. Simulation results show that

spiking mean field proximal policy optimization (S-MFPPO)

achieves better performance than actor-critic (AC), proximal

policy optimization (PPO), and spiking proximal policy opti-

mization (S-PPO) on average reward, access rate, colligation

probability, and throughput.
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