
Proactive Attack Detection at the Edge through an 
Ensemble Deep Learning Model 

Panagiotis Fountas  
Department of Informatics and 

Telecommunications 
University of Thessaly 

Lamia, Greece 
email: pfountas@uth.gr 

Nikos Tziritas 
Department of Informatics and 

Telecommunications 
University of Thessaly 

Lamia, Greece 
email: nitzirit@uth.gr 

Maria Papathanasaki 
Department of Informatics and 

Telecommunications 
University of Thessaly 

Lamia, Greece 
email: mpapathanasaki@uth.gr 

Kostas Kolomvatsos 
Department of Informatics and 

Telecommunications 
University of Thessaly 

Lamia, Greece 
email: kostasks@uth.gr 

Abstract—The new form of the Web involves numerous 
devices present in two infrastructures, i.e., the Internet of 
Things (IoT) and the Edge Computing (EC) infrastructure. IoT 
devices are adopted to record ambient data and host lightweight 
processing to provide support for applications offered to end 
users. EC is placed between the IoT and Cloud and can be the 
host of more advanced processing activities. It has gained 
popularity due to the increased computational resources 
compared to the IoT and the decreased latency in the provision 
of responses compared to the Cloud. A high number of nodes 
may be present at the EC that should secure the Quality of 
Service (QoS) of the desired applications. Apparently, EC nodes 
become central points where the collected data are collected and 
processed. Data processing (especially when data are sensitive) 
imposes various security issues that should be mitigated in order 
to maintain high QoS levels and the uninterrupted functioning 
of EC nodes. In this paper, motivated by the need of the 
increased security, we propose an ensemble scheme for the 
detection of attacks in the EC. Our distributed scheme relies on 
the adoption of deep learning to proactively detect potential 
malfunctions. Our model is embedded in EC nodes and is 
continuously applied upon the streams of data transferred by 
IoT devices to the EC. We present the details of our approach 
and evaluate it through a variety of simulation scenarios. Our 
intention is to reveal the strengths and weaknesses of the 
provided model when adopted in a very dynamic environment 
like the EC.   

Keywords—Attack Detection, Internet of Things, Edge 
Computing, Cloud Computing, Deep Learning. 

I. INTRODUCTION 
Nowadays, Web is widely used in industrial systems, in 

the evolution of the Internet of Things (IoT) applications, the 
development of computer networks, and so on and so forth. 
The IoT is a vast network of billions of different 
interconnected devices that produce incessantly data [1]. 
These data are generated or recorded by IoT devices which are 
constantly increasing due to Industry 4.0, environmental 
monitoring, smart mobility, etc. The growth of these devices, 
in both private and public environments, has made them an 
integral part of our daily lives, thus, attracting a high number 
of attackers [20]. The uncontrolled deployment of these 
devices in the environment inevitably leads to attacks, 
compromising the leakage of sensitive data, unauthorized 
access to websites, or even Denial of Service (DoS). We need 
to keep in mind that many IoT devices have low-end 
specifications that often make them more prone to attacks and 

may compromise the entire network. Another security risk 
faced by IoT devices is Advanced Persistent Threats (APTs) 
[21]. Groups of well-trained and well-funded individuals 
discover security vulnerabilities in IoT systems and attack in 
a highly organized manner. The security of IoT devices is 
crucial targeting to the provision of confidentiality, integrity, 
availability, but also privacy for users. For the above reasons, 
security in IoT devices has been increasing in recent years. 
Modern tools have significantly improved the pre-existing 
security gaps; however, the need remains and undoubtedly 
intensifies. The heterogeneity of IoT devices, in both their 
protocols and at the physical level, makes the provision of 
security models particularly challenging. Equally demanding 
is the fact that there are innumerable nodes, but also the 
absence of modern security methods in them [24]. 

Due to the computational limitations of IoT devices, often, 
‘heavy’ tasks such as classification, which is particularly 
important in detecting attacks, are transferred to edge devices 
to distribute the workload close to data sources [2]. All these 
data are used to export analytics [3] and support efficient 
decision making. Frequently, data are characterized by 
missing values [4], outliers, and other factors that affect the 
data quality and make it unsuitable for decision making. Data 
quality is a multidimensional concept. Frequently mentioned 
dimensions are accuracy, completeness, consistency, and 
timeliness. We should consider that any of these aspects can 
be adversely affected by any abnormal behavior, such as an 
outlier, a missing value, etc. Such behavior can be caused by 
unusual behavior of an IoT device that has either been 
attacked or has technical failure [25]. 

Except from the data quality a significant task in EC, is to 
ensure the integrity of the data from various attacks and 
malwares. The growing need for ever-greater remote 
connectivity has sparked attacks on computer systems. 
Therefore, the detection of such attacks became a critical and 
integral part in the creation and use of computer systems in 
order to ensure their integrity and the security of the data used 
[5, 6]. Attacks such as brute-force, buffer overload, phishing, 
trojan horses etc. can cause significant problems in the 
computer systems that are attacked. Over the years a great deal 
of effort has been made to ensure security in the Edge. The 
constant increase of well-organized attacks leads to the 
creation of imaginative but quite complex solutions that 
remained in the spotlight for a short time. However, there are 
models that adopt artificial intelligence techniques to perform 
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unsupervised learning on sensor data for anomaly detection. 
More specifically, autonomous security nodes (Intrusion 
Detection Systems - IDS) are used, which are placed close to 
the IoT device we are interested in and have the ability to 
perform either in real time or with minimal delay, checks for 
possible intrusions, identification and potentially deal with 
them [26]. Edge security issues have also been addressed in 
scenarios involving real-time data streams collected by weak 
IoT devices and sent to EC nodes for further processing to 
protect sensitive data. In this case, the use of standard 
encryption mechanisms, such as AES, may not be applicable 
at the device level. A lighter encryption model is therefore 
adopted in which a driver device obscures the identity of 
individual devices, while at the same time allowing easier 
management of encryption keys and encrypted data [27]. 

In this paper, we depart from the state-of-the-art solutions 
and propose an ensemble model for the detection of attacks. 
Our approach combines two deep learning models, i.e., an 
autoencoder [28] and a Long Short Term Memory LSTM 
model [29] in order to autonomously detect attacks upon 
streams of data collected by IoT devices. Before applying the 
attack detection scheme as dictated by the LSTM model, we 
pre-process the incoming data and perform a dimensionality 
reduction through the use of the autoencoder. This step is 
necessary because in order to rely on the most significant 
features of data and reveal hidden aspects of the attacks. In 
addition, dimensionality reduction will assist in speeding up 
the detection process as less features will be fed into the 
LSTM model minimizing the decision-making time. Both 
models are ‘connected’ in a sequential order, i.e., the outcome 
of the autoencoder is fed into the aforementioned LSTM 
model that decides for the presence of an attack. Among 
various types of deep learning schemes, we strategically select 
the use of the LSTM model for its capability to learn long-
term dependencies. Compared to past efforts in the domain, 
the novelty of our approach is found in the model's ability to 
perform dimensionality reduction in data with nonlinear 
correlation and also to identify long term dependencies on 
dimensionality reduced data. The following list presents the 
salient contributions of our paper: 

 We provide an attack detection model for Edge 
Computing (EC), combining two deep learning 
models; 

 We enhance the behavior of EC nodes with a 
mechanism that conducts dimensionality reduction, 
even in nonlinear correlated data, using an 
autoencoder; 

 We evaluate the proposed model through its 
comparison to decision tree classifiers, a Naive 
Bayes classifier and a probabilistic model proposed 
in [32], using two datasets. 

 
The paper is organized as follows. In section II, we 

present the prior work in the specific domain Section III 
reports on the preliminary information and the high level 
architecture of our model. The proposed model is thoroughly 
described in Section IV. Section V discusses the experimental 
setup as well as the evaluation of our model by giving 
numerical performance outcomes. Finally, in Section VI, we 
conclude our paper and present future extensions that will 
expand the research outcomes.  

II. RELATED WORK 
The fast increase of usage of the Edge and Cloud 

computing creates new security challenges in which the 
research community has to propose mechanisms against the 
threats and vulnerabilities [19]. The detection of attacks has 
always been a challenge for the research community which 
studies algorithms that efficiently protect various systems 
from attacks. The existence of an abnormal behavior in a 
computer system may indicate the infection of the system, 
e.g., by a malware. Many research activities focus on the 
detection of such anomaly behaviors. In [7], the authors 
propose an outlier detection method which takes under 
consideration a vector of data to confirm a candidate outlier 
using a sliding window approach. The detection of outliers 
may be considered as a means for the detection of attacks in 
the sense that outliers depict abnormalities in the usual, 
normal data. A high number of research efforts deal with the 
detection of outliers. The majority of them adopt statistical 
methods to detect the deviation of data from the ‘common’ 
distribution as detected in historical measurements [30, 31, 32, 
33]. In [8] is proposed a system level Device-Edge split IDS 
for IoT devices which first analyze the behavior of devices and 
then detect anomalous behaviors which may constitute an 
intrusion on the devices. The advantage of this system is the 
ability to detect efficiently the anomalous behaviors with the 
minimum possible overhead for the IoT device. Moreover, in 
[11], the authors develop an intelligent Multi-Task Learning 
framework, which is called Cyber-Typhon, combining On-
Line Sequential Extreme Learning Machines (OS-ELM) and 
Restricted Boltzmann Machines (RBMs) to detect Advanced 
Persistent Threats (APT) attacks through the anomaly 
detection. Cyber-Typhon detects correlated features with the 
network traffic to identify if the traffic of the network is 
normal using the OS-ELM. In case OS-ELM identify the 
traffic as threat then puss it forward to responsible RBM to 
identify the type of the threat. A survey on EC security is 
presented in [17] where the challenges are described while 
pointing out the problems of the EC in five categories, i.e., 
access control, key management, privacy protection, attack 
migration and anomaly detection. Furthermore, the authors 
analyze the existing solutions which have been proposed by 
the research community and discuss about the future 
directions on EC security. The authors of [9] present a 
lightweight attack detector in the IoT infrastructure which is 
based on a learning recurrent Random Neural Network. The 
low computational cost of the detector proposed in [9] makes 
it suitable for the detection of certain types of Botnet attacks 
in IoT system and for deployment by edge devices. In [10], a 
distributed detection scheme is proposed that uses ELM 
classifiers. It should be mentioned that the proposed scheme 
adopts High Performance Computing (HPC) cluster 
resources, improving the performance of the model. A 
Blockchain Security Architecture is presented in [12] to 
secure the network communications between traded Industrial 
IoT devices based on deep learning smart contracts. These 
contracts execute a mutual traffic control agreement using a 
trained deep autoencoder neural network to detect anomalies. 
The research effort presented in [13], proposes a web attack 
detection system which relies on analysis of URLs and can be 
applied at any EC node to detect web attacks. The web attack 
detection system consists of three phases i.e., data preparation, 
discrimination and action. It relies on two deep learning 
models i.e., Convolutional Neural Networks (CNN) and 
models in Natural Language Processing (NLP). In addition, 
the paper presented in [18] proposes a Channel State 
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Information (CSI) management frame authentication system 
for spoofing attack detection, which is called PHYAlert and is 
appropriate for protecting Wi-Fi-based edge networks. 
Similarly, the authors in [22] propose FlowGuard, an edge 
centric IoT defense scheme relying on two deep learning 
models i.e., LSTM model and CNN, for the detection, 
identification, classification, and mitigation of IoT DDoS 
attacks. In [23], an intrusion detection system which is called 
APAE is presented. APAE relies on an asymmetric parallel 
Autoencoder which adopts standard and dilated convolutional 
filters. Its architecture makes it capable of detecting in real 
time various categories of attacks in IoT networks. 

III. PRELIMINARIES & HIGH LEVEL ARCHITECTURE 
We consider a network of ݊ IoT devices depicted by the 

following set ܫ = ,ଵܫ} ,ଶܫ ௪ܫ … ,  }. IoT devices collect dataܫ
from their environment using sensors and interact among them 
using the network. In our scenario, we adopt a set of ݉ EC 
nodes  ܰܧ = ܧ} ଵܰ, ܧ ଶܰ, ܧ ܰ, … ,  } which gather the dataܰܧ
from the IoT devices to perform processing activities. Without 
loss of generality, every ܧ ܰ  ‘supervises’ a group ܩ  of IoT 
devices such that ܩ = ,ଵܩ} ,ଶܩ ,ܩ … , ଵܩ } andܩ ∩ ଶܩ ∩ ܩ ܩ∩ = ∅ (see Fig. 1). More specifically, EC nodes receive the 
data in the form of multivariate vectors i.e., ܺ௧௪ ,[ݐ]ଵ௪ݔ}= ,[ݐ]ଶ௪ݔ ,[ݐ]௭௪ݔ … , ,ݓ where indexes {[ݐ]ௗ௪ݔ  represent ݐ
the ݓ௧ IoT device and the time instance when the data vector 
is reported. Also, every dimension ݔ௭௪[ݐ] is characterized by 
indexes ݐ  and ݖ , which express the time instance and the 
dimension of ܺ௧௪ from the ݓ௧ IoT device respectively. Every 
time an EC node receives a data vector passes it through the 
proposed ensemble scheme to detect if the IoT device which 
reports the data vector has been infected by a malware. 

 
Fig. 1. The network of our scenario 

Our proposed ensemble scheme consists of a sequential 
connection of two deep learnings models i.e., autoencoders 
and a LSTM model network. More specifically, we use the 
former model to perform a dimensionality reduction over the 
data received by streams. The autoencoder conducts the 
dimensionality reduction based on its ability to compress data 
with non-linear correlations which differs with other relevant 
techniques like the Principal Component Analysis (PCA) [34]. 
After the dimensionality reduction step, the outcome of the 
autoencoder, i.e., ܺ′௧௪ = ,[ݐ]ᇱଵ௪ݔ} … , ,{[ݐ]ᇱ௪ݔ ݎ < ݀ is fed as 
input to the LSTM model. On the other hand, the LSTM 
model is used for binary classification of reduced data vectors 
into the proper class. The reason that we decide to adopt an 
LSTM model as it is capable of learning long-term 
dependencies upon data. We consider the set of classes ܥ ,ܣ}=  depicts a normal data ܣ depicts an attack and ܣ ,.i.e ,{ܣ
vector. The LSTM model output expresses the decision of the 

proposed scheme for the data vector  ܺ௧௪  using a 
representation into lower dimensions. 

IV. ATTACK DETECTION BASED ON ENSEMBLE 
SCHEME 

A. Dimensionality Reduction for Attacks Detection 
Autoencoders belong to the category of unsupervised 

learning algorithms, i.e., no training data should be taken into 
consideration. One of the most significant applications of 
autoencoders is dimensionality reduction where the 
autoencoder finds the representation of data in less dimensions 
than the original ones, focusing only on the most significant 
features. They are also adopted to eliminate noise from images 
by learning the noise during the training process, in order to 
remove the noise from new images [35]. Another application 
of autoencoders is anomaly detection where the model is fed 
with data and learns to reconstruct them with a low error. 
When the autoencoder is fed with anomaly data, the error is 
high enough that it exceeds a predefined threshold, thus, it can 
easily detect anomalies. The ‘architecture’ of an autoencoder 
consists of: (i) an encoder; (ii) a bottleneck, and; (iii) a 
decoder. 

An autoencoder works as follows [14,15]. An input vector (ܺ௧௪)் ∈ ℝௗ×ଵ  goes through the hidden layer where 
compression / dimensionality reduction is performed 
according to (1): 

 ܺ′௧௪ = α( ଵܹ(ܺ௧௪)் + ܾଵ) (1) 

The outputs of the hidden layer are depicted by ܺ′௧௪ ∈ ℝ×ଵ, 
with ݎ < ݀. In our approach, we reduce the dimensions of data 
into a two-dimensional representation. Additional parameters 
(depicted by the above presented equation) are applied in the 
management of data as they transferred through the layers of 
the network. These parameters are: 

 ଵܹ ∈ ℝ×ௗ  refers to the weight for the first layer, 
i.e., the encoder; 

 ܾଵ ∈ ℝ×ଵ  expresses the bias vector for the first 
layer. The bias allows the activation equation to be 
shifted to the right or left; 

 α represents the activation equation which is usually 
a non-linear equation like Rectified Linear Unit 
(ReLU) function. 

The second layer, i.e., the decoder, tries to reconstruct the 
input from the reduced data with the highest possible 
accuracy. This process is performed by applying (2). 

 ܺ௧௪ = α( ଶܹܺ′௧௪ +  ܾଶ)  (2) 

In (2), the following parameters are adopted to generate the 
initial inputs with the lowest possible error: 

 ଶܹ ∈ ℝௗ×   refers to the weight for the second layer, 
i.e., decoder; 

 ܾଶ ∈ ℝௗ×ଵ expresses the bias vector for the second 
layer (decoder). 

For the calculation of ଵܹ , ଶܹ and ܤଵ ଶܤ , , the 
autoenconder tries to minimize a loss equation (usually, the 
Mean Square Error - MSE), that measures the difference 
between the input and the reconstructed vector resulting from 
the dimensionality reduced data. Equation (3) depicts the 
minimization step of the detected error. 
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{ܮ} ݁ݖ݅݉݅݊݅݉  = ,்൫(ܺ௧௪)݂}݁ݖ݅݉݅݊݅݉ ܺ௧௪൯} (3) 

Using backpropagation and an optimizer, such as the 
stochastic gradient descent, each data sample (ܺ௧௪)்  goes 
through the autoencoder to calculate ܺ′௧௪ and ܺ௧௪. 

B. The Proposed LSTM model 
An LSTM model consists of three parts known as gates 

and a cell state or memory cell. These gates are: (i) the input 
gate; (ii) the forget gate and; (iii) the output gate (see Fig. 2 
[36]). Assuming we have ℎ hidden units, the batch size equal 
to ݒ and the number of inputs equal to ݑ, we notate the input, 
the hidden state of current and previous timestamps as ௧ܻ  ∈  ℝ௩×௨  and ܪ௧, ∋ ௧ିଵܪ   ℝ௩× , respectively. In our 
scenario, the input of LSTM model is the output of 
autoencoder, i.e., ௧ܻ = (ܺ′௧௪)். The value of each part of the 
LSTM network can be calculated by the following equations 
[16]:  

௧ܫ  = σ( ௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (4) 

௧ܨ  = σ൫ ௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ൯ (5) 

 ௧ܱ = σ( ௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (6) 

where σ is the sigmoid equation ௫ܹ , ௫ܹ, ௫ܹ ∈  ℝ௨×, and ܹ , ܹ, ܹ ∈  ℝ×  are weight parameters and ܾ, ܾ , ܾ ∈  ℝଵ× are biases. A significant component in the 
operation of LSTMs is the memory cell which is transferred 
through the repeating modules to solve the vanishing gradient 
problem [37]. The following equation holds true: 

௧ܥ  = ௧ܨ ⊙ ௧ିଵܥ + I௧ ⊙  ሚ௧ (7)ܥ

In (7), the input gate decides the percentage of contribution 
of the new data via the candidate memory cell ܥሚ௧ while the 
forget gate adjusts the contribution of the old Memory Cell ܥ௧ିଵ.  The candidate memory cell ܥሚ௧ is calculated as follows:  

ሚ௧ܥ  = ℎ(X௧݊ܽݐ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (8) 

where ௫ܹ ∈  ℝ௨× and ܹ ∈  ℝ×  are weight parameters 
and ܾ ∈  ℝଵ× is a bias vector. The last but not least part in 
the LSTM module is the hidden state ܪ௧  which expressed as 
the next equation shows: 

௧ܪ  = ௧ܱ ⊙ tanh (ܥ௧) (9) 

 
Fig. 2. The architecture of an LSTM neuron 

C. Data Driven Attacks Detection 
In our approach, we sequentially combine the above-

described deep learning models to produce an ensemble 
scheme which is capable to classify data and detect potential 
attacks using only the most significant features of data. In 
particular, we use the first component of the autoencoder to 

 
a https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+ 

perform the envisioned dimensionality reduction and identify 
the appropriate features, i.e., we incorporate into our decision-
making module the encoder part. More specifically, the output 
of the encoder produces vectors with two features i.e.,ܺ′௧௪ ,[ݐ]ᇱଵ௪ݔ}= {[ݐ]ᇱଶ௪ݔ . Then, the reduced data are transferred as 
inputs to the LSTM model network to perform the desired 
classification. Obviously, the LSTM model is pre-trained 
adopting a relevant dataset defined by historical values and 
experts. The benefit of this approach is the improvement of 
time complexity that the LSTM model needs to perform the 
binary classification of every data vector i.e., ܣ or ̅ܣ. In case a 
data vector is detected as attack, the EC node rejects the vector 
and interrupts the communication with IoT device until it 
receives a certification that the device is no longer infected. 
However, this approach lies beyond the scope of the current 
paper. 

V. EXPERIMENTAL SETUP AND EVALUATION 
In our experimental evaluation, we rely on the occupancy 

detection dataseta. The dataset consists of experimental data 
used for binary classification (room occupancy) and contains 
values for the temperature, humidity, light, ܱܥଶ  and 
occupancy of an office room. The ground truth occupancy is 
obtained from time stamped pictures that were taken every 
minute. More specifically, the proposed model is trained over 
the aforementioned dataset which is already divided into three 
parts. Out of the total of 20,560 data samples, 8,143 (≅39%) 
become the training set, 2,665 (≅13%) samples is the first 
testing set and the remaining 9,752 (≅ 47%) is the second 
testing set. With this approach, we experiment with two cases: 
(a) in the former experimental scenario, we consider the 75% 
of data as the training dataset (8,143 out of 10,808 instances); 
(b) in the latter experimental scenario, we consider the 45% of 
data as the training dataset (8,143 out of 17,895 instances). 
The dataset is not associated with the attack detection; 
however, it is a representative dataset for classification 
problems that matches to our approach. We assume the 
presence of a person in the room as an attack, i.e., occupancy =  1  and his/her absence as a normal condition, i.e., 
occupancy = 0 . We consider three baseline models, a 
Decision Tree Classifier (DTC), Naive Bayes Classifier 
(NBC) and a statistical model proposed in [32] comparing 
their performance with our model, i.e., the Attack Detection 
based on Reduced Data (ADRD) scheme. For the evaluation, 
we rely on Precision, Recall, Accuracy, True Negative Rate 
(TNR) and ܨଵ score, as they are realized by the calculation of 
True Positives (TP), True Negatives (TN), False Positives 
(FP) and False Negatives (FN). We define as TP the number 
of predictions correctly identified in the appropriate class 
(attack or occupancy), TN the number of predictions correctly 
identified as absence of an attack (or occupancy), FP the 
number of instances which are wrongly characterized as 
positive events and FN the number of instances which are 
wrongly characterized as negative events. The discussed 
performance metrics are calculated as follows: 

݊݅ݏ݅ܿ݁ݎܲ  = ܶܲ/(ܶܲ +  (10)  (ܲܨ

 ܴ݈݈݁ܿܽ = ܶܲ/(ܶܲ + ݕܿܽݎݑܿܿܣ (11)  (ܰܨ = (ܶܲ + ܶܰ)/(ܶܲ + ܶܰ + ܲܨ +  (12)  (ܰܨ

 ܴܶܰ = ܶܰ/(ܶܰ +  (13)  (ܲܨ
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݁ݎܿݏ ଵܨ  = (2 ∙ ܶܲ)/(2 ∙ ܶܲ + ܲܨ +  (14)  (ܰܨ

The best performance of the ADRD is achieved when these 
metrics reach the maximum value, i.e., the unity. In that case, 
ADRD manages to eliminate false positives and false 
negatives which means that attacks are efficiently detected 
without missing any event. 

 
Fig. 3. Performances of Models for the 1st testing dataset 

 Fig. 3 presents the performance of the aforementioned 
models for the first testing dataset which contains 2,665 data 
samples. As we can see, the ADRD has better performance for 
all metrics compared to the remaining models except from the 
TNR, which is higher in DTC by 0.3544%. The metric which 
shows the effectiveness of our model against the others, is ܨଵ score which takes under consideration both Precision and 
Recall metrics. Tis depicts the ability of the proposed model 
to minimize FP and FN events. 

In Fig. 4, we observe the performance evaluation in a 
larger dataset than in the previous experimental scenario with 
9,752 data samples. Recall shows the ADRD's ability to detect 
attacks correctly eliminating FN events. NB has twice the FN 
of ADRD, which makes it unreliable in this attack detection 
mechanism, as it ranks more attacks as non-attacks as opposed 
to ADRD. We have to notice that this is critical as any false 
negative event jeopardizes the functioning of EC nodes. In 
that sense, FN events are more important than FP because any 
undetected attack will harm the stability of EC nodes and the 
network. More specifically, we observe that Recall in ADRD 
is 99.65% and in NBC is 99.31%, so their difference is 0.34%. 
This number may be relatively low, however, if we consider 
the number of the incoming data to EC nodes, we can easily 
identify the negative effects and the potentials for resulting 
undetected attacks. For instance, in 1,000 events, 340 FN 
events can be translated into 340 attacks not detected by the 
NBC model. TNR is 2.1 points higher in NBC than ADRD. 
The same stands for the Precision, which shows the model's 
‘anxiety’ to detect attacks classifying normal events as 
abnormal scenarios. In general, the NBC shows a bad binning 
of continuous variables being not suitable for imbalanced data 
that it is not the case with the ADRD. 

 
Fig. 4. Performances of Models for the 2nd testing dataset 

Our evaluation reveals that the proposed model manages 
to perform the best possible results when the amount of the 
training data dominates our datasets (first experimental 
scenario). Apparently, a low number of training instances 
negatively affects the performance of our model which is 
expected as the LSTM model requires enough data in order to 
learn the hidden statistics of the defined dataset. In any case, 
the ADRD achieves performance outcomes above 88% for the 
entire set of the adopted metrics (Precision, Recall, Accuracy, 
TNR, ܨଵ score). 

In Fig. 5. we present the time required for the training 
process of the ADRD, the DTC and the NBC.  

 
Fig. 5. Time comparison for training proccess 

The time required for ADRD training is clearly affected by the 
number of the hidden layers of the LSTM model. Our LSTM 
model has 256X128X64X32X60 units placed at five layers. 
The time that the LSTM model requires for training is ~0.998 
seconds per epoch. The NBC training time is 0.013 seconds 
and for the DTC it is 0.032 seconds. In summary, the DTC 
requires less training time than the ADRD, but the 
performance metrics are worse than our model. As for NBC, 
it is also faster in training than the ADRD, but lags behind the 
proposed model for the reasons already provided in the above 
description. The SM is not included in this evaluation process 
as it does not rely on a training phase. 

VI. CONCLUSIONS AND FUTURE WORK 
There is no doubt that attack detection is a very significant 

research subject that concerns the security of any ICT system. 
Currently, there are ongoing efforts to ensure security on the 
EC in a variety of ways. In the case of this paper, we proposed 
a model that utilizes data with non-linear correlation and after 
a dimensionality reduction phase adopted to detect the most 
significant features, data are processed by an LSTM model to 
decide whether they depict an attack or not. Our ensemble 
scheme is able to achieve very high levels of accuracy as 
evaluated through a high number of simulations. However, the 
architecture of LSTM model networks does not allow them to 
be efficient in non-sequential data. Undoubtedly, the proposed 
model responds efficiently to the detection of attacks and 
could be incorporated into a real system. An extension of this 
work can be found on the implementation of a more complex 
model that can respond to both sequential and non-sequential 
data in order to detect attacks effectively. 
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