
Proactive Attack Detection at the Edge through an
Ensemble Deep Learning Model

Panagiotis Fountas
Department of Informatics and

Telecommunications
University of Thessaly

Lamia, Greece
email: pfountas@uth.gr

Nikos Tziritas
Department of Informatics and

Telecommunications
University of Thessaly

Lamia, Greece
email: nitzirit@uth.gr

Maria Papathanasaki
Department of Informatics and

Telecommunications
University of Thessaly

Lamia, Greece
email: mpapathanasaki@uth.gr

Kostas Kolomvatsos
Department of Informatics and

Telecommunications
University of Thessaly

Lamia, Greece
email: kostasks@uth.gr

Abstract—The new form of the Web involves numerous
devices present in two infrastructures, i.e., the Internet of
Things (IoT) and the Edge Computing (EC) infrastructure. IoT
devices are adopted to record ambient data and host lightweight
processing to provide support for applications offered to end
users. EC is placed between the IoT and Cloud and can be the
host of more advanced processing activities. It has gained
popularity due to the increased computational resources
compared to the IoT and the decreased latency in the provision
of responses compared to the Cloud. A high number of nodes
may be present at the EC that should secure the Quality of
Service (QoS) of the desired applications. Apparently, EC nodes
become central points where the collected data are collected and
processed. Data processing (especially when data are sensitive)
imposes various security issues that should be mitigated in order
to maintain high QoS levels and the uninterrupted functioning
of EC nodes. In this paper, motivated by the need of the
increased security, we propose an ensemble scheme for the
detection of attacks in the EC. Our distributed scheme relies on
the adoption of deep learning to proactively detect potential
malfunctions. Our model is embedded in EC nodes and is
continuously applied upon the streams of data transferred by
IoT devices to the EC. We present the details of our approach
and evaluate it through a variety of simulation scenarios. Our
intention is to reveal the strengths and weaknesses of the
provided model when adopted in a very dynamic environment
like the EC.

Keywords—Attack Detection, Internet of Things, Edge
Computing, Cloud Computing, Deep Learning.

I. INTRODUCTION
Nowadays, Web is widely used in industrial systems, in

the evolution of the Internet of Things (IoT) applications, the
development of computer networks, and so on and so forth.
The IoT is a vast network of billions of different
interconnected devices that produce incessantly data [1].
These data are generated or recorded by IoT devices which are
constantly increasing due to Industry 4.0, environmental
monitoring, smart mobility, etc. The growth of these devices,
in both private and public environments, has made them an
integral part of our daily lives, thus, attracting a high number
of attackers [20]. The uncontrolled deployment of these
devices in the environment inevitably leads to attacks,
compromising the leakage of sensitive data, unauthorized
access to websites, or even Denial of Service (DoS). We need
to keep in mind that many IoT devices have low-end
specifications that often make them more prone to attacks and

may compromise the entire network. Another security risk
faced by IoT devices is Advanced Persistent Threats (APTs)
[21]. Groups of well-trained and well-funded individuals
discover security vulnerabilities in IoT systems and attack in
a highly organized manner. The security of IoT devices is
crucial targeting to the provision of confidentiality, integrity,
availability, but also privacy for users. For the above reasons,
security in IoT devices has been increasing in recent years.
Modern tools have significantly improved the pre-existing
security gaps; however, the need remains and undoubtedly
intensifies. The heterogeneity of IoT devices, in both their
protocols and at the physical level, makes the provision of
security models particularly challenging. Equally demanding
is the fact that there are innumerable nodes, but also the
absence of modern security methods in them [24].

Due to the computational limitations of IoT devices, often,
‘heavy’ tasks such as classification, which is particularly
important in detecting attacks, are transferred to edge devices
to distribute the workload close to data sources [2]. All these
data are used to export analytics [3] and support efficient
decision making. Frequently, data are characterized by
missing values [4], outliers, and other factors that affect the
data quality and make it unsuitable for decision making. Data
quality is a multidimensional concept. Frequently mentioned
dimensions are accuracy, completeness, consistency, and
timeliness. We should consider that any of these aspects can
be adversely affected by any abnormal behavior, such as an
outlier, a missing value, etc. Such behavior can be caused by
unusual behavior of an IoT device that has either been
attacked or has technical failure [25].

Except from the data quality a significant task in EC, is to
ensure the integrity of the data from various attacks and
malwares. The growing need for ever-greater remote
connectivity has sparked attacks on computer systems.
Therefore, the detection of such attacks became a critical and
integral part in the creation and use of computer systems in
order to ensure their integrity and the security of the data used
[5, 6]. Attacks such as brute-force, buffer overload, phishing,
trojan horses etc. can cause significant problems in the
computer systems that are attacked. Over the years a great deal
of effort has been made to ensure security in the Edge. The
constant increase of well-organized attacks leads to the
creation of imaginative but quite complex solutions that
remained in the spotlight for a short time. However, there are
models that adopt artificial intelligence techniques to perform

19

2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

978-1-6654-6667-7/21/$31.00 ©2021 IEEE
DOI 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00018

unsupervised learning on sensor data for anomaly detection.
More specifically, autonomous security nodes (Intrusion
Detection Systems - IDS) are used, which are placed close to
the IoT device we are interested in and have the ability to
perform either in real time or with minimal delay, checks for
possible intrusions, identification and potentially deal with
them [26]. Edge security issues have also been addressed in
scenarios involving real-time data streams collected by weak
IoT devices and sent to EC nodes for further processing to
protect sensitive data. In this case, the use of standard
encryption mechanisms, such as AES, may not be applicable
at the device level. A lighter encryption model is therefore
adopted in which a driver device obscures the identity of
individual devices, while at the same time allowing easier
management of encryption keys and encrypted data [27].

In this paper, we depart from the state-of-the-art solutions
and propose an ensemble model for the detection of attacks.
Our approach combines two deep learning models, i.e., an
autoencoder [28] and a Long Short Term Memory LSTM
model [29] in order to autonomously detect attacks upon
streams of data collected by IoT devices. Before applying the
attack detection scheme as dictated by the LSTM model, we
pre-process the incoming data and perform a dimensionality
reduction through the use of the autoencoder. This step is
necessary because in order to rely on the most significant
features of data and reveal hidden aspects of the attacks. In
addition, dimensionality reduction will assist in speeding up
the detection process as less features will be fed into the
LSTM model minimizing the decision-making time. Both
models are ‘connected’ in a sequential order, i.e., the outcome
of the autoencoder is fed into the aforementioned LSTM
model that decides for the presence of an attack. Among
various types of deep learning schemes, we strategically select
the use of the LSTM model for its capability to learn long-
term dependencies. Compared to past efforts in the domain,
the novelty of our approach is found in the model's ability to
perform dimensionality reduction in data with nonlinear
correlation and also to identify long term dependencies on
dimensionality reduced data. The following list presents the
salient contributions of our paper:

 We provide an attack detection model for Edge
Computing (EC), combining two deep learning
models;

 We enhance the behavior of EC nodes with a
mechanism that conducts dimensionality reduction,
even in nonlinear correlated data, using an
autoencoder;

 We evaluate the proposed model through its
comparison to decision tree classifiers, a Naive
Bayes classifier and a probabilistic model proposed
in [32], using two datasets.

The paper is organized as follows. In section II, we

present the prior work in the specific domain Section III
reports on the preliminary information and the high level
architecture of our model. The proposed model is thoroughly
described in Section IV. Section V discusses the experimental
setup as well as the evaluation of our model by giving
numerical performance outcomes. Finally, in Section VI, we
conclude our paper and present future extensions that will
expand the research outcomes.

II. RELATED WORK
The fast increase of usage of the Edge and Cloud

computing creates new security challenges in which the
research community has to propose mechanisms against the
threats and vulnerabilities [19]. The detection of attacks has
always been a challenge for the research community which
studies algorithms that efficiently protect various systems
from attacks. The existence of an abnormal behavior in a
computer system may indicate the infection of the system,
e.g., by a malware. Many research activities focus on the
detection of such anomaly behaviors. In [7], the authors
propose an outlier detection method which takes under
consideration a vector of data to confirm a candidate outlier
using a sliding window approach. The detection of outliers
may be considered as a means for the detection of attacks in
the sense that outliers depict abnormalities in the usual,
normal data. A high number of research efforts deal with the
detection of outliers. The majority of them adopt statistical
methods to detect the deviation of data from the ‘common’
distribution as detected in historical measurements [30, 31, 32,
33]. In [8] is proposed a system level Device-Edge split IDS
for IoT devices which first analyze the behavior of devices and
then detect anomalous behaviors which may constitute an
intrusion on the devices. The advantage of this system is the
ability to detect efficiently the anomalous behaviors with the
minimum possible overhead for the IoT device. Moreover, in
[11], the authors develop an intelligent Multi-Task Learning
framework, which is called Cyber-Typhon, combining On-
Line Sequential Extreme Learning Machines (OS-ELM) and
Restricted Boltzmann Machines (RBMs) to detect Advanced
Persistent Threats (APT) attacks through the anomaly
detection. Cyber-Typhon detects correlated features with the
network traffic to identify if the traffic of the network is
normal using the OS-ELM. In case OS-ELM identify the
traffic as threat then puss it forward to responsible RBM to
identify the type of the threat. A survey on EC security is
presented in [17] where the challenges are described while
pointing out the problems of the EC in five categories, i.e.,
access control, key management, privacy protection, attack
migration and anomaly detection. Furthermore, the authors
analyze the existing solutions which have been proposed by
the research community and discuss about the future
directions on EC security. The authors of [9] present a
lightweight attack detector in the IoT infrastructure which is
based on a learning recurrent Random Neural Network. The
low computational cost of the detector proposed in [9] makes
it suitable for the detection of certain types of Botnet attacks
in IoT system and for deployment by edge devices. In [10], a
distributed detection scheme is proposed that uses ELM
classifiers. It should be mentioned that the proposed scheme
adopts High Performance Computing (HPC) cluster
resources, improving the performance of the model. A
Blockchain Security Architecture is presented in [12] to
secure the network communications between traded Industrial
IoT devices based on deep learning smart contracts. These
contracts execute a mutual traffic control agreement using a
trained deep autoencoder neural network to detect anomalies.
The research effort presented in [13], proposes a web attack
detection system which relies on analysis of URLs and can be
applied at any EC node to detect web attacks. The web attack
detection system consists of three phases i.e., data preparation,
discrimination and action. It relies on two deep learning
models i.e., Convolutional Neural Networks (CNN) and
models in Natural Language Processing (NLP). In addition,
the paper presented in [18] proposes a Channel State

20

Information (CSI) management frame authentication system
for spoofing attack detection, which is called PHYAlert and is
appropriate for protecting Wi-Fi-based edge networks.
Similarly, the authors in [22] propose FlowGuard, an edge
centric IoT defense scheme relying on two deep learning
models i.e., LSTM model and CNN, for the detection,
identification, classification, and mitigation of IoT DDoS
attacks. In [23], an intrusion detection system which is called
APAE is presented. APAE relies on an asymmetric parallel
Autoencoder which adopts standard and dilated convolutional
filters. Its architecture makes it capable of detecting in real
time various categories of attacks in IoT networks.

III. PRELIMINARIES & HIGH LEVEL ARCHITECTURE
We consider a network of ݊ IoT devices depicted by the

following set ܫ = ,ଵܫ} ,ଶܫ ௪ܫ … , }. IoT devices collect dataܫ
from their environment using sensors and interact among them
using the network. In our scenario, we adopt a set of ݉ EC
nodes ܰܧ = ܧ} ଵܰ, ܧ ଶܰ, ܧ ܰ, … , } which gather the dataܰܧ
from the IoT devices to perform processing activities. Without
loss of generality, every ܧ ܰ ‘supervises’ a group ܩ of IoT
devices such that ܩ = ,ଵܩ} ,ଶܩ ,ܩ … , ଵܩ } andܩ ∩ ଶܩ ∩ ܩ ܩ∩ = ∅ (see Fig. 1). More specifically, EC nodes receive the
data in the form of multivariate vectors i.e., ܺ௧௪ ,[ݐ]ଵ௪ݔ}= ,[ݐ]ଶ௪ݔ ,[ݐ]௭௪ݔ … , ,ݓ where indexes {[ݐ]ௗ௪ݔ represent ݐ
the ݓ௧ IoT device and the time instance when the data vector
is reported. Also, every dimension ݔ௭௪[ݐ] is characterized by
indexes ݐ and ݖ , which express the time instance and the
dimension of ܺ௧௪ from the ݓ௧ IoT device respectively. Every
time an EC node receives a data vector passes it through the
proposed ensemble scheme to detect if the IoT device which
reports the data vector has been infected by a malware.

Fig. 1. The network of our scenario

Our proposed ensemble scheme consists of a sequential
connection of two deep learnings models i.e., autoencoders
and a LSTM model network. More specifically, we use the
former model to perform a dimensionality reduction over the
data received by streams. The autoencoder conducts the
dimensionality reduction based on its ability to compress data
with non-linear correlations which differs with other relevant
techniques like the Principal Component Analysis (PCA) [34].
After the dimensionality reduction step, the outcome of the
autoencoder, i.e., ܺ′௧௪ = ,[ݐ]ᇱଵ௪ݔ} … , ,{[ݐ]ᇱ௪ݔ ݎ < ݀ is fed as
input to the LSTM model. On the other hand, the LSTM
model is used for binary classification of reduced data vectors
into the proper class. The reason that we decide to adopt an
LSTM model as it is capable of learning long-term
dependencies upon data. We consider the set of classes ܥ ,ܣ}= depicts a normal data ܣ depicts an attack and ܣ ,.i.e ,{ܣ
vector. The LSTM model output expresses the decision of the

proposed scheme for the data vector ܺ௧௪ using a
representation into lower dimensions.

IV. ATTACK DETECTION BASED ON ENSEMBLE
SCHEME

A. Dimensionality Reduction for Attacks Detection
Autoencoders belong to the category of unsupervised

learning algorithms, i.e., no training data should be taken into
consideration. One of the most significant applications of
autoencoders is dimensionality reduction where the
autoencoder finds the representation of data in less dimensions
than the original ones, focusing only on the most significant
features. They are also adopted to eliminate noise from images
by learning the noise during the training process, in order to
remove the noise from new images [35]. Another application
of autoencoders is anomaly detection where the model is fed
with data and learns to reconstruct them with a low error.
When the autoencoder is fed with anomaly data, the error is
high enough that it exceeds a predefined threshold, thus, it can
easily detect anomalies. The ‘architecture’ of an autoencoder
consists of: (i) an encoder; (ii) a bottleneck, and; (iii) a
decoder.

An autoencoder works as follows [14,15]. An input vector (ܺ௧௪)் ∈ ℝௗ×ଵ goes through the hidden layer where
compression / dimensionality reduction is performed
according to (1):

 ܺ′௧௪ = α(ଵܹ(ܺ௧௪)் + ܾଵ) (1)

The outputs of the hidden layer are depicted by ܺ′௧௪ ∈ ℝ×ଵ,
with ݎ < ݀. In our approach, we reduce the dimensions of data
into a two-dimensional representation. Additional parameters
(depicted by the above presented equation) are applied in the
management of data as they transferred through the layers of
the network. These parameters are:

 ଵܹ ∈ ℝ×ௗ refers to the weight for the first layer,
i.e., the encoder;

 ܾଵ ∈ ℝ×ଵ expresses the bias vector for the first
layer. The bias allows the activation equation to be
shifted to the right or left;

 α represents the activation equation which is usually
a non-linear equation like Rectified Linear Unit
(ReLU) function.

The second layer, i.e., the decoder, tries to reconstruct the
input from the reduced data with the highest possible
accuracy. This process is performed by applying (2).

 ܺ௧௪ = α(ଶܹܺ′௧௪ + ܾଶ) (2)

In (2), the following parameters are adopted to generate the
initial inputs with the lowest possible error:

 ଶܹ ∈ ℝௗ× refers to the weight for the second layer,
i.e., decoder;

 ܾଶ ∈ ℝௗ×ଵ expresses the bias vector for the second
layer (decoder).

For the calculation of ଵܹ , ଶܹ and ܤଵ ଶܤ , , the
autoenconder tries to minimize a loss equation (usually, the
Mean Square Error - MSE), that measures the difference
between the input and the reconstructed vector resulting from
the dimensionality reduced data. Equation (3) depicts the
minimization step of the detected error.

21

{ܮ} ݁ݖ݅݉݅݊݅݉ = ,்൫(ܺ௧௪)݂}݁ݖ݅݉݅݊݅݉ ܺ௧௪൯} (3)

Using backpropagation and an optimizer, such as the
stochastic gradient descent, each data sample (ܺ௧௪)் goes
through the autoencoder to calculate ܺ′௧௪ and ܺ௧௪.

B. The Proposed LSTM model
An LSTM model consists of three parts known as gates

and a cell state or memory cell. These gates are: (i) the input
gate; (ii) the forget gate and; (iii) the output gate (see Fig. 2
[36]). Assuming we have ℎ hidden units, the batch size equal
to ݒ and the number of inputs equal to ݑ, we notate the input,
the hidden state of current and previous timestamps as ௧ܻ ∈ ℝ௩×௨ and ܪ௧, ∋ ௧ିଵܪ ℝ௩× , respectively. In our
scenario, the input of LSTM model is the output of
autoencoder, i.e., ௧ܻ = (ܺ′௧௪)். The value of each part of the
LSTM network can be calculated by the following equations
[16]:

௧ܫ = σ(௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (4)

௧ܨ = σ൫ ௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ൯ (5)

 ௧ܱ = σ(௧ܻ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (6)

where σ is the sigmoid equation ௫ܹ , ௫ܹ, ௫ܹ ∈ ℝ௨×, and ܹ , ܹ, ܹ ∈ ℝ× are weight parameters and ܾ, ܾ , ܾ ∈ ℝଵ× are biases. A significant component in the
operation of LSTMs is the memory cell which is transferred
through the repeating modules to solve the vanishing gradient
problem [37]. The following equation holds true:

௧ܥ = ௧ܨ ⊙ ௧ିଵܥ + I௧ ⊙ ሚ௧ (7)ܥ

In (7), the input gate decides the percentage of contribution
of the new data via the candidate memory cell ܥሚ௧ while the
forget gate adjusts the contribution of the old Memory Cell ܥ௧ିଵ. The candidate memory cell ܥሚ௧ is calculated as follows:

ሚ௧ܥ = ℎ(X௧݊ܽݐ ௫ܹ + ௧ିଵܪ ܹ + ܾ) (8)

where ௫ܹ ∈ ℝ௨× and ܹ ∈ ℝ× are weight parameters
and ܾ ∈ ℝଵ× is a bias vector. The last but not least part in
the LSTM module is the hidden state ܪ௧ which expressed as
the next equation shows:

௧ܪ = ௧ܱ ⊙ tanh (ܥ௧) (9)

Fig. 2. The architecture of an LSTM neuron

C. Data Driven Attacks Detection
In our approach, we sequentially combine the above-

described deep learning models to produce an ensemble
scheme which is capable to classify data and detect potential
attacks using only the most significant features of data. In
particular, we use the first component of the autoencoder to

a https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

perform the envisioned dimensionality reduction and identify
the appropriate features, i.e., we incorporate into our decision-
making module the encoder part. More specifically, the output
of the encoder produces vectors with two features i.e.,ܺ′௧௪ ,[ݐ]ᇱଵ௪ݔ}= {[ݐ]ᇱଶ௪ݔ . Then, the reduced data are transferred as
inputs to the LSTM model network to perform the desired
classification. Obviously, the LSTM model is pre-trained
adopting a relevant dataset defined by historical values and
experts. The benefit of this approach is the improvement of
time complexity that the LSTM model needs to perform the
binary classification of every data vector i.e., ܣ or ̅ܣ. In case a
data vector is detected as attack, the EC node rejects the vector
and interrupts the communication with IoT device until it
receives a certification that the device is no longer infected.
However, this approach lies beyond the scope of the current
paper.

V. EXPERIMENTAL SETUP AND EVALUATION
In our experimental evaluation, we rely on the occupancy

detection dataseta. The dataset consists of experimental data
used for binary classification (room occupancy) and contains
values for the temperature, humidity, light, ܱܥଶ and
occupancy of an office room. The ground truth occupancy is
obtained from time stamped pictures that were taken every
minute. More specifically, the proposed model is trained over
the aforementioned dataset which is already divided into three
parts. Out of the total of 20,560 data samples, 8,143 (≅39%)
become the training set, 2,665 (≅13%) samples is the first
testing set and the remaining 9,752 (≅ 47%) is the second
testing set. With this approach, we experiment with two cases:
(a) in the former experimental scenario, we consider the 75%
of data as the training dataset (8,143 out of 10,808 instances);
(b) in the latter experimental scenario, we consider the 45% of
data as the training dataset (8,143 out of 17,895 instances).
The dataset is not associated with the attack detection;
however, it is a representative dataset for classification
problems that matches to our approach. We assume the
presence of a person in the room as an attack, i.e., occupancy = 1 and his/her absence as a normal condition, i.e.,
occupancy = 0 . We consider three baseline models, a
Decision Tree Classifier (DTC), Naive Bayes Classifier
(NBC) and a statistical model proposed in [32] comparing
their performance with our model, i.e., the Attack Detection
based on Reduced Data (ADRD) scheme. For the evaluation,
we rely on Precision, Recall, Accuracy, True Negative Rate
(TNR) and ܨଵ score, as they are realized by the calculation of
True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN). We define as TP the number
of predictions correctly identified in the appropriate class
(attack or occupancy), TN the number of predictions correctly
identified as absence of an attack (or occupancy), FP the
number of instances which are wrongly characterized as
positive events and FN the number of instances which are
wrongly characterized as negative events. The discussed
performance metrics are calculated as follows:

݊݅ݏ݅ܿ݁ݎܲ = ܶܲ/(ܶܲ + (10) (ܲܨ

 ܴ݈݈݁ܿܽ = ܶܲ/(ܶܲ + ݕܿܽݎݑܿܿܣ (11) (ܰܨ = (ܶܲ + ܶܰ)/(ܶܲ + ܶܰ + ܲܨ + (12) (ܰܨ

 ܴܶܰ = ܶܰ/(ܶܰ + (13) (ܲܨ

22

݁ݎܿݏ ଵܨ = (2 ∙ ܶܲ)/(2 ∙ ܶܲ + ܲܨ + (14) (ܰܨ

The best performance of the ADRD is achieved when these
metrics reach the maximum value, i.e., the unity. In that case,
ADRD manages to eliminate false positives and false
negatives which means that attacks are efficiently detected
without missing any event.

Fig. 3. Performances of Models for the 1st testing dataset

 Fig. 3 presents the performance of the aforementioned
models for the first testing dataset which contains 2,665 data
samples. As we can see, the ADRD has better performance for
all metrics compared to the remaining models except from the
TNR, which is higher in DTC by 0.3544%. The metric which
shows the effectiveness of our model against the others, is ܨଵ score which takes under consideration both Precision and
Recall metrics. Tis depicts the ability of the proposed model
to minimize FP and FN events.

In Fig. 4, we observe the performance evaluation in a
larger dataset than in the previous experimental scenario with
9,752 data samples. Recall shows the ADRD's ability to detect
attacks correctly eliminating FN events. NB has twice the FN
of ADRD, which makes it unreliable in this attack detection
mechanism, as it ranks more attacks as non-attacks as opposed
to ADRD. We have to notice that this is critical as any false
negative event jeopardizes the functioning of EC nodes. In
that sense, FN events are more important than FP because any
undetected attack will harm the stability of EC nodes and the
network. More specifically, we observe that Recall in ADRD
is 99.65% and in NBC is 99.31%, so their difference is 0.34%.
This number may be relatively low, however, if we consider
the number of the incoming data to EC nodes, we can easily
identify the negative effects and the potentials for resulting
undetected attacks. For instance, in 1,000 events, 340 FN
events can be translated into 340 attacks not detected by the
NBC model. TNR is 2.1 points higher in NBC than ADRD.
The same stands for the Precision, which shows the model's
‘anxiety’ to detect attacks classifying normal events as
abnormal scenarios. In general, the NBC shows a bad binning
of continuous variables being not suitable for imbalanced data
that it is not the case with the ADRD.

Fig. 4. Performances of Models for the 2nd testing dataset

Our evaluation reveals that the proposed model manages
to perform the best possible results when the amount of the
training data dominates our datasets (first experimental
scenario). Apparently, a low number of training instances
negatively affects the performance of our model which is
expected as the LSTM model requires enough data in order to
learn the hidden statistics of the defined dataset. In any case,
the ADRD achieves performance outcomes above 88% for the
entire set of the adopted metrics (Precision, Recall, Accuracy,
TNR, ܨଵ score).

In Fig. 5. we present the time required for the training
process of the ADRD, the DTC and the NBC.

Fig. 5. Time comparison for training proccess

The time required for ADRD training is clearly affected by the
number of the hidden layers of the LSTM model. Our LSTM
model has 256X128X64X32X60 units placed at five layers.
The time that the LSTM model requires for training is ~0.998
seconds per epoch. The NBC training time is 0.013 seconds
and for the DTC it is 0.032 seconds. In summary, the DTC
requires less training time than the ADRD, but the
performance metrics are worse than our model. As for NBC,
it is also faster in training than the ADRD, but lags behind the
proposed model for the reasons already provided in the above
description. The SM is not included in this evaluation process
as it does not rely on a training phase.

VI. CONCLUSIONS AND FUTURE WORK
There is no doubt that attack detection is a very significant

research subject that concerns the security of any ICT system.
Currently, there are ongoing efforts to ensure security on the
EC in a variety of ways. In the case of this paper, we proposed
a model that utilizes data with non-linear correlation and after
a dimensionality reduction phase adopted to detect the most
significant features, data are processed by an LSTM model to
decide whether they depict an attack or not. Our ensemble
scheme is able to achieve very high levels of accuracy as
evaluated through a high number of simulations. However, the
architecture of LSTM model networks does not allow them to
be efficient in non-sequential data. Undoubtedly, the proposed
model responds efficiently to the detection of attacks and
could be incorporated into a real system. An extension of this
work can be found on the implementation of a more complex
model that can respond to both sequential and non-sequential
data in order to detect attacks effectively.

REFERENCES

[1] T. Gopalakrishnan et al., "Deep Learning Enabled Data Offloading
With Cyber Attack Detection Model in Mobile Edge Computing
Systems," in IEEE Access, vol. 8, pp. 185938-185949, 2020, doi:
10.1109/ACCESS.2020.3030726.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

23

[2] Rafał Kozik, Michał Choraś, Massimo Ficco, Francesco Palmieri, A
scalable distributed machine learning approach for attack detection in
edge computing environments, Journal of Parallel and Distributed
Computing, Volume 119, 2018, Pages 18-26, ISSN 0743-7315,
https://doi.org/10.1016/j.jpdc.2018.03.006.K. Elissa, “Title of paper if
known,” unpublished.

[3] Fountas P., Kolomvatsos K., Anagnostopoulos C. (2021) A Deep
Learning Model for Data Synopses Management in Pervasive
Computing Applications. In: Arai K. (eds) Intelligent Computing.
Lecture Notes in Networks and Systems, vol 284. Springer, Cham.
https://doi.org/10.1007/978-3-030-80126-7_44

[4] P. Fountas and K. Kolomvatsos, "Ensemble based Data Imputation at
the Edge," 2020 IEEE 32nd International Conference on Tools with
Artificial Intelligence (ICTAI), 2020, pp. 961-968, doi:
10.1109/ICTAI50040.2020.00150.

[5] Panagiotis, Fountas, Kouskouras Taxiarxchis, Kranas Georgios,
Leandros Maglaras, and Mohamed A. Ferrag 2021. "Intrusion
Detection in Critical Infrastructures: A Literature Review" Smart Cities
4, no. 3: 1146-1157. https://doi.org/10.3390/smartcities4030061

[6] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu and W. Lv, "Edge Computing
Security: State of the Art and Challenges," in Proceedings of the IEEE,
vol. 107, no. 8, pp. 1608-1631, Aug. 2019, doi:
10.1109/JPROC.2019.2918437.

[7] Kolomvatsos, K., Anagnostopoulos, C., 'Landmark based Outliers
Detection in Pervasive Applications', ICICS, 2021.

[8] Anand Mudgerikar, Puneet Sharma, and Elisa Bertino. 2020. Edge-
Based Intrusion Detection for IoT devices. ACM Trans. Manage. Inf.
Syst. 11, 4, Article 18 (December 2020), 21 pages.
DOI:https://doi.org/10.1145/3382159

[9] Filus K., Domańska J., Gelenbe E. (2021) Random Neural Network for
Lightweight Attack Detection in the IoT. In: Calzarossa M.C., Gelenbe
E., Grochla K., Lent R., Czachórski T. (eds) Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems. MASCOTS
2020. Lecture Notes in Computer Science, vol 12527. Springer, Cham.
https://doi.org/10.1007/978-3-030-68110-4_5

[10] Rafał Kozik, Michał Choraś, Massimo Ficco, Francesco Palmieri, A
scalable distributed machine learning approach for attack detection in
edge computing environments, Journal of Parallel and Distributed
Computing, Volume 119, 2018, Pages 18-26, ISSN 0743-7315,
https://doi.org/10.1016/j.jpdc.2018.03.006.

[11] Demertzis K., Iliadis L., Kikiras P., Tziritas N. (2019) Cyber-Typhon:
An Online Multi-task Anomaly Detection Framework. In: MacIntyre
J., Maglogiannis I., Iliadis L., Pimenidis E. (eds) Artificial Intelligence
Applications and Innovations. AIAI 2019. IFIP Advances in
Information and Communication Technology, vol 559. Springer,
Cham. https://doi.org/10.1007/978-3-030-19823-7_2

[12] Demertzis, K., Iliadis, L., Tziritas, N. et al. Anomaly detection via
blockchained deep learning smart contracts in industry 4.0. Neural
Comput & Applic 32, 17361–17378 (2020).
https://doi.org/10.1007/s00521-020-05189-8

[13] Z. Tian, C. Luo, J. Qiu, X. Du and M. Guizani, "A Distributed Deep
Learning System for Web Attack Detection on Edge Devices," in IEEE
Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1963-1971,
March 2020, doi: 10.1109/TII.2019.2938778.

[14] Ferreira D, Silva S, Abelha A, Machado J. Recommendation System
Using Autoencoders. Applied Sciences. 2020; 10(16):5510.
https://doi.org/10.3390/app10165510

[15] Ali, S., & Li, Y. (2019). Learning multilevel auto-encoders for DDoS
attack detection in smart grid network. IEEE Access, 7, 108647-
108659.

[16] Yao, K., Cohn, T., Vylomova, K., Duh, K., & Dyer, C. (2015). Depth-
gated LSTM. arXiv preprint arXiv:1508.03790.

[17] H. Zeyu, X. Geming, W. Zhaohang and Y. Sen, "Survey on Edge
Computing Security," 2020 International Conference on Big Data,
Artificial Intelligence and Internet of Things Engineering (ICBAIE),
2020, pp. 96-105, doi: 10.1109/ICBAIE49996.2020.00027.

[18] Jiang, Z., Zhao, K., Li, R. et al. PHYAlert: identity spoofing attack
detection and prevention for a wireless edge network. J Cloud Comp 9,
5 (2020). https://doi.org/10.1186/s13677-020-0154-7

[19] ALMENDAH, Ohood M.; ALZAHRANI, Sabah M. Cloud and Edge
Computing Security Challenges, Demands, Known Threats, and
Vulnerabilities. Acad. J. Res. Sci. Pub, 2021.

[20] F. Meneghello, M. Calore, D. Zucchetto, M. Polese and A. Zanella,
"IoT: Internet of Threats? A Survey of Practical Security
Vulnerabilities in Real IoT Devices," in IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 8182-8201, Oct. 2019, doi:
10.1109/JIOT.2019.2935189.

[21] Cheng, X., Zhang, J., Tu, Y., & Chen, B. (2020). Cyber situation
perception for Internet of Things systems based on zero day attack
activities recognition within advanced persistent threat. Concurrency
and Computation: Practice and Experience, e6001.

[22] Y. Jia, F. Zhong, A. Alrawais, B. Gong and X. Cheng, "FlowGuard:
An Intelligent Edge Defense Mechanism Against IoT DDoS Attacks,"
in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552-9562, Oct.
2020, doi: 10.1109/JIOT.2020.2993782.

[23] Basati, A., Faghih, M.M. APAE: an IoT intrusion detection system
using asymmetric parallel auto-encoder. Neural Comput & Applic
(2021). https://doi.org/10.1007/s00521-021-06011-9

[24] Hassan, W. H. (2019). Current research on Internet of Things (IoT)
security: A survey. Computer networks, 148, 283-294

[25] Wand, Y., & Wang, R. Y. (1996). Anchoring data quality dimensions
in ontological foundations. Communications of the ACM, 39(11), 86-
95

[26] Zissis, D. (2017, June). Intelligent security on the edge of the cloud. In
2017 International Conference on Engineering, Technology and
Innovation (ICE/ITMC) (pp. 1066-1070). IEEE.

[27] Jolfaei, A., & Kant, K. (2019). Data security in multiparty edge
computing environments. Temple University Philadelphia United
States.

[28] Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. arXiv
preprint arXiv:2003.05991.

[29] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., &
Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE
transactions on neural networks and learning systems, 28(10), 2222-
2232

[30] Singh, D. A. A. G., & Leavline, E. J. (2016). Model-based outlier
detection system with statistical preprocessing. Journal of Modern
Applied Statistical Methods, 15(1), 39.

[31] Hubert, M., Rousseeuw, P.J. & Segaert, P. Multivariate functional
outlier detection. Stat Methods Appl 24, 177–202 (2015).
https://doi.org/10.1007/s10260-015-0297-8

[32] C. Manikopoulos and S. Papavassiliou, "Network intrusion and fault
detection: a statistical anomaly approach," in IEEE Communications
Magazine, vol. 40, no. 10, pp. 76-82, Oct. 2002, doi:
10.1109/MCOM.2002.1039860.

[33] Pittino F, Puggl M, Moldaschl T, Hirschl C. Automatic Anomaly
Detection on In-Production Manufacturing Machines Using Statistical
Learning Methods. Sensors. 2020; 20(8):2344.
https://doi.org/10.3390/s20082344

[34] Plaut, E. (2018). From Principal Subspaces to Principal Components
with Linear Autoencoders. ArXiv, abs/1804.10253

[35] Bajaj, K., Singh, D. K., & Ansari, M. A. (2020). Autoencoders based
deep learner for image denoising. Procedia Computer Science, 171,
1535-1541.

[36] Kolomvatsos, K., Anagnostopoulos, C., 'A Deep Learning Model for
Demand-driven, Proactive Tasks Management in Pervasive
Computing', IoT, MDPI, 1(2), 240-258, 2020.

[37] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into Deep
Learning. arXiv preprint arXiv:2106. 11342, 354–357.

24

