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Abstract—Large graphs or automata have their data that
can’t fit in a single machine, or may take unreasonable time to
be processed. We implement with MapReduce and Giraph two
algorithms for intersecting and minimizing large and distributed
automata. We provide some comparative analysis, and the exper-
iment results are depicted in figures. Our work experimentally
validates our propositions as long as it shows that our choice,
in comparison with MapReduce one, is not only more suitable
for graph oriented algorithms, but also speeds the executions up.
This work is one of the first steps of a long-term goal that consists
in a high level distributed graph processing language.

Index Terms—Big Data, Large Graphs and Automata, Dis-
tributed Computing, MapReduce, Bsp.

I. INTRODUCTION

With the popularity and progress of computational tech-
nologies and social networks, data in the form of graph has
become omnipresent, thus widely considered for modeling in
many domains such as networks (computer, road, chemical,
biological, and social networks), graph databases, linked data,
knowledge bases, data mining, analytics, machine learning and
business intelligence.

As an example, concerning social graphs, personalized
ranking or popularity have to be calculated by Facebook, as
well as finding communities, determining shared connections,
and make propagation of advertisement for almost one billion
users. Influential vertexes for up to one trillion web pages
have to be determined by PageRank Google’s algorithm. In
the domain of road networks and communication, processing
big graphs is unavoidable in order to determine routing trans-
portation and maximum flow. Moreover, pathology graphs help
in identifying some anomalies, and biology graphs are very
important to understand interactions between proteins.

Our decade is without doubt the decade of digital universe,
since almost all data are available in digital form; data are
generated much more than before and the growth is exponen-
tial (data explosion). This is the consequence of the fact that
the Internet is ubiquitous and each human is practically data
generator. Furthermore, this state of affairs will be amplified
in the future with the advent of IoT (Internet of Things), in
which things (fridges, cars, watches, etc.) are also connected
and thus lots of data will pass from users to servers, to devices
and back.
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When data become too large or complex to be processed
by classical applications, a common solution is the use of
many computers to distribute the storage of data and to process
them in parallel. From-scratch solutions have been used in the
past [1]-[3], but they have rapidly been replaced by higher
level large-scale systems for graph processing. The most
famous one is Hadoop [4], introduced by Google, and which
has become the de facto standard for processing big data,
with its parallel programming model called MapReduce [5].
Since the latter is not suitable for iterative graph algorithms,
in-memory frameworks such as PowerGraph [6], Google’s
Pregel [7], GraphLab [8] and Spark/GraphX [9] are proposed
to accelerate the execution of algorithms that are iterative. In
this way, many classical graph problems, such as connected
components, PageRank, shortest path, and minimum spanning
tree, have been solved by using these platforms [10]-[19], and
sometimes accompanied by comparative studies and exper-
iments [20]-[24]. Nevertheless, their programing paradigms
are not high level enough, and thus not very intuitive in many
cases.

That being said, we can now introduce our concern. Our
general and long term goal is to propose a high level lan-
guage for graph-like structure processing, a sort of distributed
graph language that hides, the most, the distributed aspect. A
program with this language would be automatically or semi-
automatically translated into a lower level one that we describe
above. With this aim in mind, a first step of our goal was to
find relevant programming building blocks or artefacts that
characterize programs. Some artefacts concerning classical
graphs solutions are already considered. But, for the sake of
exhaustiveness, we decided to originally find and consider arte-
facts of another kind of graphs, namely automata. In this way,
we proposed and studied solutions for automata distributed
intersection [25], minimization [26] and determinization [27],
[28]. The goal of the present work is to implement and evaluate
in order to experimentally validate our first step propositions.
To the very best of our knowledge, ours works are the only
ones that use in-memory distributed platforms to address
automata related problems.

The rest of this paper is organized as follows: Section II
gives some related works and Section III briefly recalls some
basic notions related to graph, automata and their distributed



processing. In Section IV we present the experiments we
conducted in order to experimentally validate some of our
propositions, as well as the associated analysis. Conclusions
are drawn in Section V.

II. RELATED WORKS

We talk about big data when data sets are so large or com-
plex that they can’t be dealt with by classical and conventional
applications. The treatment concerns data storage, analysis,
visualization, querying, sharing and so on. As we previously
said, a common solution is the use of a many computers to
distribute the storage of data and to process them in parallel.
Obviously, very large automata are not outdone.

Here we will point out two families of solutions regarding
large graphs distributed processing, more specially for specific
graphs named automata. The first family is solutions built
from scratch, in which user or designer has to be an expert
in distributed systems in order to settle the infrastructure and
manage it. The other family concerns the use of platforms with
a higher level of abstraction hiding complexity of machines co-
ordination, resources management and allocation. Our present
work is placed in this second platform model.

A lot of algorithms in automata processing exist, namely
very important ones such as automata intersection, deter-
minization or minimization. For instance, when we consider
the latter, which consists in transforming a deterministic finite
automaton into a smaller and equivalent one, many low level
or from scratch solutions have been proposed in the literature.
Shared memory computers are considered in [1], [2] for
parallel algorithms. These solutions are applicable for very
tightly coupled parallel computers with shared Random Access
Memory and intensive use of random access. Moreover, a
512-processor CM-5 supermachine is used in [1] for the
minimization of a 525,000 states DFA. When we consider a
very large DFA, a distributed disk storage may be necessary.
In these circumstances, a disk-based and parallel algorithm is
exhibited in [3]. A 29 computers cluster is used in order to
obtain a mid-range DFA containing nearly two billion states
and then goes on by obtaining the equivalent and minimal
DFA containing not more than 800,000 states.

The solutions mentioned above are part of the first family
or lower level solutions.

Not long ago, Hadoop distributed platform [4] is introduced
by Google, and it rapidly became the de facto standard for big
data processing. It has a parallel programming model called
MapReduce [5]. The goal is to make easier parallel processing
by providing two interfaces: map and reduce. The parallel
processing is achieved by partitioning data across computers
and running in parallel map and reduce routines on these
partitions. In Hadoop, different machines are connected and
the management complexity is hidden for the user, as if he is
using one big computer. Ever since then, many MapReduce
solutions for classical graph problems have be proposed [10]-
[13]. When we consider big automata, authors in [10], [11]
offer solutions for automata intersection and minimization
respectively.

Even if MapReduce programming model can address a
lot of classical graph algorithms, it has been noticed and
recognized that MapReduce is not suitable for iterative or
repetitive graph algorithms. This is due to excessive In-
put/Output with the Hadoop Distributed File System - HDFS
- and data shuffling at each of the iterations. Since this
model does not have a natural support for repetition, the only
solution is to schedule consecutive rounds, which results in
very significant overhead. This is the reason why some in-
memory graph frameworks have been proposed in order to
accelerate the running of repetitive graph algorithms. We can
cite propositions such as Google’s Pregel [7], PowerGraph [6],
and Spark/GraphX [9]. The majority of these frameworks use a
vertex-centric programming paradigm. For instance, when we
consider Pregel, which is based on Bulk Synchronous Parallel
(BSP [29]), each graph node or vertex may receive messages
from its in-neighbors, updates its internal state, and sends
messages to out-neighbors at every round. For many classical
graph problems, such as connected components, pagerank,
shortest path, and minimum spanning tree, platforms compar-
ative studies and experiments have been done [20]-[24]. The
platforms in question are PowerGraph [6], Pregel/Giraph [7],
Spark/GraphX [9] and GraphLab [8].

However, the aforementioned frameworks were not yet ex-
ploited for the specific case of large automata. We then initiate
the novel use of BSP model for automata intersection [25],
minimization [26] and determinization [27], [28]. As we said
earlier, the goal of our studies is to find new interesting arte-
facts for our long term goal. This led at least to the additional
following contributions: (1) we speed up some algorithms due
to the use of in-memory platforms, contrary to solutions based
on MapReduce; (2) we optimize solutions by the use of more
intuitive algorithms thanks to BSP programming model which
is more suitable for graph-targeted algorithms; and (3) in some
cases, this suitable model helps to avoid the production of
useless data (some MapReduce algorithms cannot avoid this
inconvenience).

In the present work, we then implement and evaluate some
of our propositions in order to have an experimental validation.

III. PRELIMINARIES

In this section, we briefly recall basic notions related to
graph and automata. Then, we do the same for distributed and
parallel platforms.

A. Graphs and Automata

1) Graph: A graph G = (V, E) is a structure composed
of a set V of vertices and a set £ = {(u,v) | u,v € V} of
edges connecting pairs of vertices. The number of vertices and
the numbers of edges are denoted |V| and | E| respectively. In
some situations, it may be important to assign a label o to
edges of the graph. Depending on field of study, this label
can symbolize weight, distance, symbol, etc. A labeled graph
is a graph G = (V, E,¢) with a label function 6 : £ — ¥
associated with the set F of edges, with X a set of labels. Fur-
thermore, when we consider the edges features, many graph



topologies can be distinguished: directed or undirected graphs,
multigraphs, hypergraphs, among others. In the present work,
we are only interested in directed graphs. In an undirected
graph, the edge (u,v) from vertex u to v is the same as (or
has the same meaning as) the edge (v, u) from vertex v to w.

2) Automata: An automaton or Finite state Automaton
(FSA) is a directed and labeled graph, with an input vertex
(state) and a set of output (final) vertices. A non formal
and brief presentation of Deterministic (DFA) and Non-
deterministic Finite state Automaton (NFA) will be given here.
They are the two kinds of FSA that we considered in our
works.

A DFA - Deterministic Finite state Automaton - is a tuple
(X,V,v;,0, F) that contains a set V of vertices (states).
Between pairs of vertices, we may have directed and labeled
edges or transitions. The set of all possible labels (symbols)
is denoted by the alphabet . From each vertex, at most one
outgoing transition is labeled by a label of 3. This transition
(edge) is said to be deterministic. We have one initial vertex
v; and some vertices are said to be accepting or final. These
vertices belong to F' C V. In addition, the transition function
6 of a DFA decides, from a current vertex, which vertex the
system will move to after reading or considering a label. A
word (sequence of labels) is said to be accepted by a DFA
if its labels correspond to transitions from v; to a final state.
The language accepted by a FSA A is denoted by L(A). It
is the set of words accepted by A. Figure 1-(a) shows the
DFA Apm = (£ ={a,b},V ={0,1,2},v;, = 0,6, F = {2})
such that 6(0,a) = 1,6(1,a) = 1,6(1,b) = 2,6(2,a) = 1 and
5(2,b) = 2. L(Apm) is the set of words beginning with label
a et ending with label b. In general, the input vertex is drawn
with an incoming arrow, and final vetices are double-circled.

(b) a,b
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Fig. 1. (a) Deterministic Finite state Automaton A pgy . (b) Non-deterministic
Finite state Automaton A ngx.

An NFA - Non-deterministic Finite state Automaton - is
almost like a DFA, apart from, for a given vertex, we may
have more than one outgoing transition (edge) with the same
label. This transition is said to be non-deterministic. Figure 1-
(b) gives the NFA Aym = (X = {a,b},V ={0,1,2},v; =
0,6,F = {2}) such that §(0,a) = {1},6(1,a) = {1} and
5(1,b) = {1,2}. Only one transition (edge) makes Anm non-
deterministic. It is the last one. In fact, from state 1, and for
the label b, we have two outgoing transitions, and thus two
target vertices 1 and 2. This NFA is equivalent to the DFA

Apru depicted in Figure 1-(a) (that is, L(Anm) = L(Apm))
since it also accepts all words that start with ”a” and end with
”b”. The process that consists in transforming an NFA into an
equivalent DFA is called determinization.

B. Parallel and Distributed computing

In this section, we will recall platforms and programming
paradigms dedicated to parallel and distributed computing. We
already talk about first, low level and from-scratch systems in
related works (Section II). In this way, we’ll only focus on
higher level ones and briefly describe them.

1) MapReduce: MapReduce is definitely a well-known
programming model when it is about processing large data.
Nonetheless we will recall some features. MapReduce [5]
is a Google’s programming model that contains mainly two
functions or routines, namely map and reduce. The user has
to implement them. The signatures of these two functions are
map: (K,V) — {(K',V')} and reduce: (K,{V}) —
{(K',V')}. The Hadoop Distributed File System (HDFS)
ensures the storage of input data in a distributed manner,
and each mapper has in charge a portion of these data. In
each MapReduce round, key-value pairs (K, V') are output by
mappers. These couples are automatically partitioned by the
framework (phase called shuffle), depending on the values of
K. Couples with the same value of K belong to the same
group (K, [Vi,---,V]]), and this group will be received and
processed by a same reducer.
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Fig. 2. (a) Process model of Mapreduce. (b) Basic computation model of
BSP.

The process model of MapReduce is shown in Figure 2-(a).
Data (couples) with identical key are represented by rectangles
of the same color. Mapper are represented by circles in the
Map() phase. Seeing as we have three distinct keys (gray,
green and blue rectangles), three reducers will only be needed,
corresponding to the three different keys (the tree circles of the



phase of Reduce()). Data output by reducers are represented
by rectangles in the Reduce() phase.

2) Memory-Based approaches: As we said earlier, MapRe-
duce is not efficient for iterative algorithms. That is why
several in-memory platforms have been proposed in order
to speed up running of programs. A well-known solution
is Spark [30] which can be nearly described as an ”in-
memory MapReduce”. However, programming paradigms of
MapReduce and Spark are also not suitable for graph-oriented
problem. In this way, other in-memory platforms appeared
that take into account the nature of graph, that is, consider
the core notions of vertex and edge. We can cite for instance
Spark/GraphX [9] or Pregel/Giraph [7] (based on BSP). Our
work is based on this latter.

BSP (Bulk Synchronous Parallel [29]) is a parallel pro-
gramming model with a message passing interface.It was
proposed in order to achieve scalability by the parallelization
of tasks across many workers. The model is defined as a
combination of the following attributes: (i) several workers
for processing computations, (i7) a router for exchanges of
messages between these workers, and (i) required supersteps
in order to synchronize the components executions. In each
superstep, every worker execute a task consisting in local
processing, receiving and sending messages. Workers start the
next superstep (barrier synchronization, Figure 2-(b)) just after
the present one has been finished by all workers. A BSP
program is a sequence of such supersteps.

One of the first implementations of BSP is Pregel [7]. It pro-
poses a native interface expressly for programming algorithms
on graph, and hides the details of communication between
workers. Pregel uses a computing model said to be “think like
a vertex”. The computation of graph is described in terms
of what each graph node (vertex) has to compute; edges are
communication channels between vertices. During a superstep,
each active vertex run a function defined by the user and
called compute (), may receive or send messages from or
to some other vertices.The barrier of synchronization ensures
that a message sent in a superstep will be available in the next
superstep at its target vertices. A vertex can ask to become
inactive during any superstep (function voteToHalt () call)
and will wake up if it receives a message. When all vertices
are inactive, and no other message is to be received, Pregel
terminates. Remark that the implementation of Pregel provided
by Google is not available publicly, but it exists other open
source options, like Apache Giraph [31], that we use for our
experiments.

IV. EXPERIMENTS

In this section, we will present the experiments we con-
ducted in order to experimentally validate some of our propo-
sitions. It is about automata intersection (Section IV-A) and
automata minimization (Section IV-B).

For the experiments, we used a Hadoop cluster of four
computers, with one Namenode and three Datanodes, running
Linux Mint with Linux Kernels ”5.*” and having 4 Go of

memory. This cluster is rather modest but it was able to meet
our goal. An overview of the characteristics is given below.

## Hadoop 2.4.0; Giraph 1.1.0; Openjdk 1.8.x
## NAMENODE ## % Role of Master Node
+ 120 Go Hard Disk. 4 Go RAM.
+ Linux Mint 19.3 Cinnamon.
+ Linux Kernel 5.0.0-32-generic.
+ CPU Intel Core i5-3570 CPU @ 3.40GHz x 4
## DATANODES ## % Role of Worker Nodes
# DATA_NODE_1 & DATA_NODE_2
+ 500 Go Hard Disk. 4 Go RAM.
+ Linux Mint 20.1 Cinnamon.
+ Linux Kernel 5.4.0-58-generic.
+ CPU Intel Core i3 CPU 540 @ 3.07GHz x 2
# DATA_NODE_3
+ 500 GoHard Disk.
+ Linux Mint 20.1 Cinnamon.
+ Linux Kernel 5.4.0-58-generic.
+ CPU Intel Core 13-2120 CPU @ 3.30GHz x 2

4 Go RAM.

All input data are stored in HDFS, as well as programs
outputs. For iterative programs with MapReduce, we needed
to write shell (bash) scripts in order to execute rounds one
after the other, manage inputs of following rounds depending
of previous outputs, and manage stop conditions.

A. Automata Intersection

Given m NFAs A,---,A,,, their intersection is the au-
tomaton [ that accepts only words accepted by all the m
NFAs. In other words, the intersection is such that L(I) =
L(Ay) N --- N L(A,,). The intersection can be processed
by the Cartesian construct. For instance, given two NFAs
Al = (E, ‘/1, Vi1, 51, Fl) and A2 = (E, VQ, Vi, 52, FQ), an
intersection A, such that L(A;) N L(A2) = L(A), can
be obtained by the Cartesian construct A = A3 ® Ay =
(E,V, v, 0, F) such that V = Vi x V5, v; = (’Uil,’l}ig),
F =F xFandd: (Vi x V) x% — 2V1XV2 with
(w1, w2) € 6((v1,v2),0) if and only if, for a given o € X,
wy € 01(v1,0) and wg € d2(va, o). This algorithm can be
easily implemented when data are in a single computer (non
distributed) and thus it will not be scalable. We focus our study
on distributed solutions.

1) MapReduce-Based Solution: When we consider NFAs
intersection A1 ®- - -® A,,, 3 variants of a MapReduce solution
that uses the Cartesian construct are presented in [10]. In
our work, we consider and implement the mapping based
on symbols. The MapReduce solution is done in such a
way that there is one reducer for each of the alphabet
labels or symbols. From edge (transition) (v;,o,w;) of au-
tomaton A;, a mapper will generate the key-value pair
(o, (vi, o, w;)). Thus, after having received inputs { (v;, o, w;)}
for i = 1,--- ,m, the designated reducer will output transi-
tions {((v1,- - ,0m), 0, (w1, -+ ,wm))}.

Nevertheless, this solution is costly. For instance, if we have
m input automata, with n states each, their method may output
an NFA with around n™ vertices at least, and many of these
vertices may be useless. A useless vertice is a vertex from
which a final vertex can’t be reached (dead vertex) or that can’t
be reached from the initial vertex. Deleting useless vertices



doesn’t change the accepted language. For that matter, authors
planned as perspective to “investigate reducing the number of
states in the product automaton, ...” [10]. This aim is likely
to be difficult or costly to meet with MapReduce model.

Automata intersection with MR:
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Fig. 3. Influence of input size on execution time and output size

We implement this solution on two automata with an
alphabet of 4 symbols and by varying the autmata sizes. The
results are depicted in Figure 3. Works in [10] only evaluate
processing times for two methods by varying the alphabet size.
We did the same (Figure 3-(a)) and our curve have the same
look. But we also evaluate the influence of the size of input
automata on output size (Figure 3-(b)).

The observations we can have are listed below:

1) An empty intersection is an intersection that leads to an
empty language, that is, no word is accepted by both
automata. In Figure 3, execution times are the same for
empty and non-empty intersections. It is a similar state
of affairs for their output sizes. This is a predictable
result since the algorithm cannot avoid producing all
vertices combinations, no matter if the result will be
empty or not.

2) We have a growth worse than quadratic of the output
size, thus as well as the execution time. We recall that
if we have m input automata, with n states each, the
algorithm may output an NFA with around n™ vertices
at least, and many of these vertices may be useless.
In our case, m = 2. In addition, storing states and
transitions of the output automaton (intersection) costs
more space than storing states and transitions of an input
automaton since states of the product automaton, in our

case, are pairs of input automata states. Finally, If we
were varying the number of input automata, we would
have an exponential growth for both execution time and
output size.

TABLE I
DETAILS ON DATA CONFIGURATION RELATED TO EXPERIMENTS IN
FIGURE 3.
Input si
nput size |} E{J - - o -
& [=1 [=1 =1 [=1
o] =] =] g 3
E o o E o
g g g a g
= o o N o
N =h =h o =h
g 4 =1 g
° 5| % 2
o | s 2,
— —_ o
- g5 _§
R 2
ps]
o3| o3| @
2]
> > >
124 Ko 37.46 s 72 5,184 167.5 Mo 7,487,245
208 Ko 72.66 s 93 8,649 461.4 Mo 20,517,192
564 Ko 284.60 s | 150 | 22,500 3.2 Go 137,102,413
748 Ko 502.44s | 172 | 29,584 5.6 Go 235,690,872
1 Mo 869.77 s | 200 | 80,802 10.4Go 431,442,279

For the sake of completeness, we give in Table I some other
details on our data configuration. The two input automata have
the same configuration (number of states and transitions), but
the nature of transitions are different (considering labels). Only
non-empty intersection is considered since the algorithm has
the same behavior as empty intersection.

2) Memory-Based Solution: In [25], we proposed a BSP-
Based Approach for NFAs intersection, an in-memory ap-
proach in order to give a better alternative to the MapReduce
solution proposed in [10], and whose experiments results are
presented above. We recall the “compute()” function (Algo-
rithm 1) that will be run during the system execution by every
active vertex.

Unfortunately, we didn’t implement Algorithm 1 for the
pure and simple reason that our contribution in [25] in
comparison to the works in [10] is more related to the space
complexity than execution time. In fact since it is a one round
MapReduce algorithm, the execution time would be almost
the same as our Giraph algotihm with some supersteps, or
less costly than our in-memory solution when the number
of supersteps is large. Experiments would be better, even if
we know that RAM access time is negligible. This will be
illustrated by experiments presented in Section IV-B.

3) Analysis: The observations we can have, when we com-
pare the MapReduce solution and our in-memory alternative
are listed below:

o As we previously said, the main advantage of our solution
in relation to the MapReduce proposition is the state
complexity. Intrinsically, we cannot produce a vertex
unreachable from the initial one, since Algorithm 1 starts



Algorithm 1 compute(vertez v, messages m)

1: if (PRODUCTION_SUPERSTEP) then
2:  if (superstep = 0) then
3 if (v.isInitial SimpleState()) then
4 Let ®p0 — (U’i17"' 7vim);
5: createVertex(®po);
6 sendMessage(®po . ID, ix)
7 end if
8 else
9: if (m # 0 A Ww.isVisited()) then
10: Let ®p < (p1,--+ ,pm);
11: Let 0;  getEdges(p;. 1D, m)
12: Let®2<—ﬂ {UGE|E|qi€Q¢:q¢€5i(pi,a)};
1
13: for each o € ®% do
14: for each tuple (g1, -- ,qn) such that ¢; € d;(p;,0)
do
15: Let g < (g1, ,qm);
16: createVertex(%q);
17: createEdge(®p, o, ®q);
18: sendMessage(®q. 1D, ¢i);
19: end for
20: end for
21: v.setVisited(TRUE);
22: end if
23:  end if
24: else
25:  for each ®p.1ID in m do
26: sendMessage(v.get Edges(),%p. ID)
27:  end for
28: end if

29: v.woteT oHalt();

by the initial vertex (v;q,- - ,v;,,) and moves forward
to the next new state only if a common label can be read.

1) The first consequence is that a lot of useless states
will not be produced, contrary to the MapReduce
solution.

2) The second consequence is, in the case of empty
intersection, the whole process will stop as soon
as the emptiness is detected; while MapReduce
solution would continue be that as it may.

These positive points have been possible thanks to BSP
model and the Giraph “think like a vertex” programming
paradigm which is more suitable, intuitive and expressive in
order to address graph algorithms.

B. Automata Minimization

A DFA M is said to be minimal if and only if all DFAs
D accepting the same language (L(M) = L(D)) have at
least as many vertices (states) as M. The process that finds
the minimal DFA M from a DFA D is called Minimization.
Based on a taxonomy given in [32], most of algorithms for
the minimization of an automaton, like Hopcroft’s [33] and
Moore’s [34], are based on the notion of equivalent classes
regarding automaton states. There is one exception based on
a alternating of reversal and determinization, and it is about
Brzozowski’s algorithm [35].

MapReduce implementations of Hopcroft’s and Moore’s
algorithms for automaton minimization are described in [11],
as well as experiments and analysis. We decided to focus only
on Moore’s algorithm (Algorithm 2), and then we proposed a
memory-based alternative in [26], accompanied by a compara-
tive study. In this section, we therefore present the comparative
experiments we did on these two solutions.

Algorithm 2 An adaptation by [11] of the Moore’s algo-
rithm [34].
Input: A DFA A= (X ={a1, - ,ax},V,v;,6, F)
Output: 7 = V/=

1: 10
2: forallveV
3 if v € F then
4 71
5:  else
. )
7
8
9

m <0
end if
: end for
: repeat
10 1141
11: forallveV
12: 7T1i) — 7T1i)_1 .
13:  end for
14: until |7°| = |7

i—1 i—1 i—1
ﬂ-é(v,al) ’ 7T6('U,a2)' st 7T-5(1),ak)

i71|

1) MapReduce-Based Solution: Moore’s algorithm [11] is
composed of a preprocessing step, and a number of MapRe-
duce rounds. Due to the nature of MapReduce and to the
fact that the algorithm is an iterative refinement of the initial
equivalence class, authors had to create and maintain a data
structure (set A) in order to help them transferring data from
one round to another. In fact [7], MapReduce is fundamentally
functional, thus expressing an algorithm on graph as a series
of MapReduces needs passing the whole graph state from one
round to the following, often requiring a lot of communication
and corresponding overhead. In the present case, mappers will
use part of A and output specific data going to reducers. The
latter will then output new (identifiers of) equivalence classes
and update A. Of course it would be much better if we could
avoid using a non-intuitive set like A. Luckily, our memory-
based solution [26] will not only avoid this extra data set, but
also will speed the execution up.

Given a n-states automaton A, it is proved that in the worst
case, = = =,_2 [34]. So in the worst case, Moore’s algorithm
needs (n — 1) rounds.

2) Memory-Based Solution: Given an automaton A =
X ={a1, - ,ar},V,v;,0,F), we propose in [26] a Giraph
"compute () " function in order to minimize A. Our solution
is inspired by the one of MapReduce (equivalence classes) and
has the same programming style as Algorithm 1. We therefore
don’t put here this "compute () " function.

Our memory-based solution needs as many supersteps as
2 times the number of needed MapReduce rounds. In fact,



half of our supersteps are devoted to sending data. Despite
this fact, our implementation is by a long way faster than the ronterafipdomea Mnmzion
MapReduce’s one when we consider speed ratio between disk 8 e
and RAM accesses. We recall that MapReduce model is in o — i —
pain due to excessive "shuffle & sort” and input/output with
disk (HDFS) at each round, whereas Giraph is memory-based.

3) Analysis: We have implemented MapReduce Moore’s
algorithm proposed in [11], as well as our in-memory al-
ternative presented in [26], and the comparative analysis is %
illustrated in Figures 4-(a), 4-(b), 4-(¢) and 4-(d). The "
experiments will be analyzed below.

The curve in Figure 4-(a) shows the number of states of .
the input automaton and the corresponding number of states 0 10 2 % 40 50 50 70 80
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same output automaton. We draw the first bisector in order to e /n%
emphasize that the input automaton is really reduced. In fact, “ al il

all the curve is under this bisector and this means that the . } < 5
number of input automaton states is greater than the number S =
of output automaton states. A first important remark is that (1) '
the curve is neither increasing nor decreasing, which means
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that the size of the output automaton is not proportional to the 8

size of the input one. For instance, an automaton can be more . Dg/

reduced than a smaller one (a 71-states automaton is reduced o

to a 9-states one while a 37-states automaton is reduced to g - - . - )

a 15-states one). In addition, we enrich the curve by adding #MR_founds

the number of MapReduce rounds (iterations). For instance, (b)

the algorithm needs 4 iterations to reduce an input automaton e o R ro T MIN s )

from 71 states to 9 states. A second important remark is that . - ("::ph“e" .

(2) the number of required MapReduce rounds (or Giraph s LW - W it o L

supersteps) is not proportional to the number of the automaton . ' .

states, that is why the number of rounds is neither increasing . !

nor decreasing depending on the number of automaton states. g, - 1”2

Remarks (1) and (2) indicate that the automaton reduction g . ] 2 f
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rate, as well as the number of required MapReduce rounds,
depend on some other characteristics of the automaton, and
not directly on its size.

The curve in Figure 4-(b) shows the number of MapReduce
rounds and the corresponding number of states of the output z : * ; ¢ ’ e °

#MR_rounds

(minimized) automaton. The curve is enriched by adding (©)
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automaton is really reduced. As for what we said concerning 00 ‘

Figure 4-(a), the number of output states is not proportional | e

to the number of rounds (see the case of runs requiring 6 and

8 rounds).
The curve in Figure 4-(¢) shows principally the number of 250

MapReduce rounds (as well as the number of Giraph super-

steps) and the corresponding output sizes of the algorithms -

(left y axis). We recall that the number of required MapReduce

rounds is two times the number of Giraph supersteps. The

Giraph curve is then enriched by the number of required 5
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Giraph exponentially increase at each round. The reason is Fig. 4. Compratative minimization with MapReduce and Giraph.



that the algorithm we decided to implement (Algorithm 2, an
adaptation by [11] of the Moore’s algorithm [34]) uses strings
of bits to identify states (equivalence classes) of the output
automaton. In fact, the class identifiers m, consist of (k + 1)
of previous round, k being the size of the alphabet. That is
why the output size has an exponential growth. We inherit
this bit-string representation from the algorithm we decided
to implement. (2) The growth of MapReduce outputs is by far
faster than the ones of Giraph. For instance, when the Giraph
output size is 2Mo, the one of MapReduce is more than 8§ Mo
(for times larger). And this ratio increases as a function of the
number of rounds. The reason is that MapReduce solution uses
a data structure A, and the latter also stores class identifiers
7, many times. We recall that they use A in order to help
them transferring data from one round to another. Fortunately,
our Giraph solution doesn’t need such a data structure.

The curve in Figure 4-(d) shows the number of MapReduce
rounds (as well as the number of Giraph supersteps) and the
corresponding execution times of the two algorithms. Despite
the fact that our in-memory solution needs two times the
number of iterations of the one of MapReduce, it appears
clearly that our in-memory solution is by far faster than
MapReduce. For instance, for 12 MapReduce rounds (24
Giraph supersteps), MapReduce needs around 6 minutes while
Giraph needs only 25 seconds. We recall that MapReduce
model is in pain due to excessive “shuffle & sort” and
input/output with disk (HDFS) at each round, whereas Giraph
is memory-based.

V. CONCLUSION

In this work, we developed and studied some implemen-
tations in Map-Reduce and Giraph of two algorithms for
intersecting NFAs and minimizing DFAs. In fact, we imple-
ment the NFAs intersection in MapReduce and compare it
with our memory-based solution. We also implement, compare
and analyze DFA minimization algorithms in MapReduce and
giraph. We give information on our experiments environment
and the results are depicted in some figures.

Generally, two important things have to be captured con-
cerning the benefit of using in-memory and “think like a ver-
tex” paradigm. First of all, the BSP paradigm is more suitable
to express graph oriented algorithms. This is what allows us
to avoid generating useless data in our intersection algorithm,
and makes unnecessary the use and the maintenance of a quite
counterintuitive data structure. Secondly, and obviously, the
use of an in-memory platform has sped the execution up.

This work being done, the next step is to identify program-
ming building blocks to use in a higher level language for
distributed large graphs, considering that the distribution will
be hidden at most.
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