
On Large Automata Processing: Towards A High

Level Distributed Graph Language

1st Alpha Mouhamadou DIOP

LANI - Université Gaston Berger

Saint-Louis, Sénégal

diop.alpha-mouhamadou@ugb.edu.sn

0000-0002-6241-6787

2nd Cheikh BA

LANI - Université Gaston Berger

Saint-Louis, Sénégal

cheikh2.ba@ugb.edu.sn

0000-0002-4515-5044

Abstract—Large graphs or automata have their data that
can’t fit in a single machine, or may take unreasonable time to
be processed. We implement with MapReduce and Giraph two
algorithms for intersecting and minimizing large and distributed
automata. We provide some comparative analysis, and the exper-
iment results are depicted in figures. Our work experimentally
validates our propositions as long as it shows that our choice,
in comparison with MapReduce one, is not only more suitable
for graph oriented algorithms, but also speeds the executions up.
This work is one of the first steps of a long-term goal that consists
in a high level distributed graph processing language.

Index Terms—Big Data, Large Graphs and Automata, Dis-
tributed Computing, MapReduce, Bsp.

I. INTRODUCTION

With the popularity and progress of computational tech-

nologies and social networks, data in the form of graph has

become omnipresent, thus widely considered for modeling in

many domains such as networks (computer, road, chemical,

biological, and social networks), graph databases, linked data,

knowledge bases, data mining, analytics, machine learning and

business intelligence.

As an example, concerning social graphs, personalized

ranking or popularity have to be calculated by Facebook, as

well as finding communities, determining shared connections,

and make propagation of advertisement for almost one billion

users. Influential vertexes for up to one trillion web pages

have to be determined by PageRank Google’s algorithm. In

the domain of road networks and communication, processing

big graphs is unavoidable in order to determine routing trans-

portation and maximum flow. Moreover, pathology graphs help

in identifying some anomalies, and biology graphs are very

important to understand interactions between proteins.

Our decade is without doubt the decade of digital universe,

since almost all data are available in digital form; data are

generated much more than before and the growth is exponen-

tial (data explosion). This is the consequence of the fact that

the Internet is ubiquitous and each human is practically data

generator. Furthermore, this state of affairs will be amplified

in the future with the advent of IoT (Internet of Things), in

which things (fridges, cars, watches, etc.) are also connected

and thus lots of data will pass from users to servers, to devices

and back.

When data become too large or complex to be processed

by classical applications, a common solution is the use of

many computers to distribute the storage of data and to process

them in parallel. From-scratch solutions have been used in the

past [1]–[3], but they have rapidly been replaced by higher

level large-scale systems for graph processing. The most

famous one is Hadoop [4], introduced by Google, and which

has become the de facto standard for processing big data,

with its parallel programming model called MapReduce [5].

Since the latter is not suitable for iterative graph algorithms,

in-memory frameworks such as PowerGraph [6], Google’s

Pregel [7], GraphLab [8] and Spark/GraphX [9] are proposed

to accelerate the execution of algorithms that are iterative. In

this way, many classical graph problems, such as connected

components, PageRank, shortest path, and minimum spanning

tree, have been solved by using these platforms [10]–[19], and

sometimes accompanied by comparative studies and exper-

iments [20]–[24]. Nevertheless, their programing paradigms

are not high level enough, and thus not very intuitive in many

cases.

That being said, we can now introduce our concern. Our

general and long term goal is to propose a high level lan-

guage for graph-like structure processing, a sort of distributed

graph language that hides, the most, the distributed aspect. A

program with this language would be automatically or semi-

automatically translated into a lower level one that we describe

above. With this aim in mind, a first step of our goal was to

find relevant programming building blocks or artefacts that

characterize programs. Some artefacts concerning classical

graphs solutions are already considered. But, for the sake of

exhaustiveness, we decided to originally find and consider arte-

facts of another kind of graphs, namely automata. In this way,

we proposed and studied solutions for automata distributed

intersection [25], minimization [26] and determinization [27],

[28]. The goal of the present work is to implement and evaluate

in order to experimentally validate our first step propositions.

To the very best of our knowledge, ours works are the only

ones that use in-memory distributed platforms to address

automata related problems.

The rest of this paper is organized as follows: Section II

gives some related works and Section III briefly recalls some

basic notions related to graph, automata and their distributed

processing. In Section IV we present the experiments we

conducted in order to experimentally validate some of our

propositions, as well as the associated analysis. Conclusions

are drawn in Section V.

II. RELATED WORKS

We talk about big data when data sets are so large or com-

plex that they can’t be dealt with by classical and conventional

applications. The treatment concerns data storage, analysis,

visualization, querying, sharing and so on. As we previously

said, a common solution is the use of a many computers to

distribute the storage of data and to process them in parallel.

Obviously, very large automata are not outdone.

Here we will point out two families of solutions regarding

large graphs distributed processing, more specially for specific

graphs named automata. The first family is solutions built

from scratch, in which user or designer has to be an expert

in distributed systems in order to settle the infrastructure and

manage it. The other family concerns the use of platforms with

a higher level of abstraction hiding complexity of machines co-

ordination, resources management and allocation. Our present

work is placed in this second platform model.

A lot of algorithms in automata processing exist, namely

very important ones such as automata intersection, deter-

minization or minimization. For instance, when we consider

the latter, which consists in transforming a deterministic finite

automaton into a smaller and equivalent one, many low level

or from scratch solutions have been proposed in the literature.

Shared memory computers are considered in [1], [2] for

parallel algorithms. These solutions are applicable for very

tightly coupled parallel computers with shared Random Access

Memory and intensive use of random access. Moreover, a

512-processor CM-5 supermachine is used in [1] for the

minimization of a 525,000 states DFA. When we consider a

very large DFA, a distributed disk storage may be necessary.

In these circumstances, a disk-based and parallel algorithm is

exhibited in [3]. A 29 computers cluster is used in order to

obtain a mid-range DFA containing nearly two billion states

and then goes on by obtaining the equivalent and minimal

DFA containing not more than 800,000 states.

The solutions mentioned above are part of the first family

or lower level solutions.

Not long ago, Hadoop distributed platform [4] is introduced

by Google, and it rapidly became the de facto standard for big

data processing. It has a parallel programming model called

MapReduce [5]. The goal is to make easier parallel processing

by providing two interfaces: map and reduce. The parallel

processing is achieved by partitioning data across computers

and running in parallel map and reduce routines on these

partitions. In Hadoop, different machines are connected and

the management complexity is hidden for the user, as if he is

using one big computer. Ever since then, many MapReduce

solutions for classical graph problems have be proposed [10]–

[13]. When we consider big automata, authors in [10], [11]

offer solutions for automata intersection and minimization

respectively.

Even if MapReduce programming model can address a

lot of classical graph algorithms, it has been noticed and

recognized that MapReduce is not suitable for iterative or

repetitive graph algorithms. This is due to excessive In-

put/Output with the Hadoop Distributed File System - HDFS

- and data shuffling at each of the iterations. Since this

model does not have a natural support for repetition, the only

solution is to schedule consecutive rounds, which results in

very significant overhead. This is the reason why some in-

memory graph frameworks have been proposed in order to

accelerate the running of repetitive graph algorithms. We can

cite propositions such as Google’s Pregel [7], PowerGraph [6],

and Spark/GraphX [9]. The majority of these frameworks use a

vertex-centric programming paradigm. For instance, when we

consider Pregel, which is based on Bulk Synchronous Parallel

(BSP [29]), each graph node or vertex may receive messages

from its in-neighbors, updates its internal state, and sends

messages to out-neighbors at every round. For many classical

graph problems, such as connected components, pagerank,

shortest path, and minimum spanning tree, platforms compar-

ative studies and experiments have been done [20]–[24]. The

platforms in question are PowerGraph [6], Pregel/Giraph [7],

Spark/GraphX [9] and GraphLab [8].

However, the aforementioned frameworks were not yet ex-

ploited for the specific case of large automata. We then initiate

the novel use of BSP model for automata intersection [25],

minimization [26] and determinization [27], [28]. As we said

earlier, the goal of our studies is to find new interesting arte-

facts for our long term goal. This led at least to the additional

following contributions: (1) we speed up some algorithms due

to the use of in-memory platforms, contrary to solutions based

on MapReduce; (2) we optimize solutions by the use of more

intuitive algorithms thanks to BSP programming model which

is more suitable for graph-targeted algorithms; and (3) in some

cases, this suitable model helps to avoid the production of

useless data (some MapReduce algorithms cannot avoid this

inconvenience).

In the present work, we then implement and evaluate some

of our propositions in order to have an experimental validation.

III. PRELIMINARIES

In this section, we briefly recall basic notions related to

graph and automata. Then, we do the same for distributed and

parallel platforms.

A. Graphs and Automata

1) Graph: A graph G = (V,E) is a structure composed

of a set V of vertices and a set E = {(u, v) | u, v ∈ V } of

edges connecting pairs of vertices. The number of vertices and

the numbers of edges are denoted |V | and |E| respectively. In

some situations, it may be important to assign a label σ to

edges of the graph. Depending on field of study, this label

can symbolize weight, distance, symbol, etc. A labeled graph

is a graph G = (V,E, δ) with a label function δ : E → Σ
associated with the set E of edges, with Σ a set of labels. Fur-

thermore, when we consider the edges features, many graph

topologies can be distinguished: directed or undirected graphs,

multigraphs, hypergraphs, among others. In the present work,

we are only interested in directed graphs. In an undirected

graph, the edge (u, v) from vertex u to v is the same as (or

has the same meaning as) the edge (v, u) from vertex v to u.

2) Automata: An automaton or Finite state Automaton

(FSA) is a directed and labeled graph, with an input vertex

(state) and a set of output (final) vertices. A non formal

and brief presentation of Deterministic (DFA) and Non-

deterministic Finite state Automaton (NFA) will be given here.

They are the two kinds of FSA that we considered in our

works.

A DFA - Deterministic Finite state Automaton - is a tuple

(Σ, V, vi, δ, F) that contains a set V of vertices (states).

Between pairs of vertices, we may have directed and labeled

edges or transitions. The set of all possible labels (symbols)

is denoted by the alphabet Σ. From each vertex, at most one

outgoing transition is labeled by a label of Σ. This transition

(edge) is said to be deterministic. We have one initial vertex

vi and some vertices are said to be accepting or final. These

vertices belong to F ⊆ V . In addition, the transition function

δ of a DFA decides, from a current vertex, which vertex the

system will move to after reading or considering a label. A

word (sequence of labels) is said to be accepted by a DFA

if its labels correspond to transitions from vi to a final state.

The language accepted by a FSA A is denoted by L(A). It

is the set of words accepted by A. Figure 1-(a) shows the

DFA ADFA = (Σ = {a, b}, V = {0, 1, 2}, vi = 0, δ, F = {2})
such that δ(0, a) = 1, δ(1, a) = 1, δ(1, b) = 2, δ(2, a) = 1 and

δ(2, b) = 2. L(ADFA) is the set of words beginning with label

a et ending with label b. In general, the input vertex is drawn

with an incoming arrow, and final vetices are double-circled.

Fig. 1. (a) Deterministic Finite state Automaton ADFA. (b) Non-deterministic
Finite state Automaton ANFA.

An NFA - Non-deterministic Finite state Automaton - is

almost like a DFA, apart from, for a given vertex, we may

have more than one outgoing transition (edge) with the same

label. This transition is said to be non-deterministic. Figure 1-

(b) gives the NFA ANFA = (Σ = {a, b}, V = {0, 1, 2}, vi =
0, δ, F = {2}) such that δ(0, a) = {1}, δ(1, a) = {1} and

δ(1, b) = {1, 2}. Only one transition (edge) makes ANFA non-

deterministic. It is the last one. In fact, from state 1, and for

the label b, we have two outgoing transitions, and thus two

target vertices 1 and 2. This NFA is equivalent to the DFA

ADFA depicted in Figure 1-(a) (that is, L(ANFA) = L(ADFA))
since it also accepts all words that start with ”a” and end with

”b”. The process that consists in transforming an NFA into an

equivalent DFA is called determinization.

B. Parallel and Distributed computing

In this section, we will recall platforms and programming

paradigms dedicated to parallel and distributed computing. We

already talk about first, low level and from-scratch systems in

related works (Section II). In this way, we’ll only focus on

higher level ones and briefly describe them.

1) MapReduce: MapReduce is definitely a well-known

programming model when it is about processing large data.

Nonetheless we will recall some features. MapReduce [5]

is a Google’s programming model that contains mainly two

functions or routines, namely map and reduce. The user has

to implement them. The signatures of these two functions are

map: 〈K,V 〉 → {〈K ′, V ′〉} and reduce: 〈K, {V }〉 →
{〈K ′, V ′〉}. The Hadoop Distributed File System (HDFS)

ensures the storage of input data in a distributed manner,

and each mapper has in charge a portion of these data. In

each MapReduce round, key-value pairs 〈K,V 〉 are output by

mappers. These couples are automatically partitioned by the

framework (phase called shuffle), depending on the values of

K . Couples with the same value of K belong to the same

group 〈K, [V1, · · · , Vl]〉, and this group will be received and

processed by a same reducer.

(a)

(b)

Fig. 2. (a) Process model of Mapreduce. (b) Basic computation model of
BSP.

The process model of MapReduce is shown in Figure 2-(a).

Data (couples) with identical key are represented by rectangles

of the same color. Mapper are represented by circles in the

Map() phase. Seeing as we have three distinct keys (gray,

green and blue rectangles), three reducers will only be needed,

corresponding to the three different keys (the tree circles of the

phase of Reduce()). Data output by reducers are represented

by rectangles in the Reduce() phase.

2) Memory-Based approaches: As we said earlier, MapRe-

duce is not efficient for iterative algorithms. That is why

several in-memory platforms have been proposed in order

to speed up running of programs. A well-known solution

is Spark [30] which can be nearly described as an ”in-

memory MapReduce”. However, programming paradigms of

MapReduce and Spark are also not suitable for graph-oriented

problem. In this way, other in-memory platforms appeared

that take into account the nature of graph, that is, consider

the core notions of vertex and edge. We can cite for instance

Spark/GraphX [9] or Pregel/Giraph [7] (based on BSP). Our

work is based on this latter.

BSP (Bulk Synchronous Parallel [29]) is a parallel pro-

gramming model with a message passing interface.It was

proposed in order to achieve scalability by the parallelization

of tasks across many workers. The model is defined as a

combination of the following attributes: (i) several workers

for processing computations, (ii) a router for exchanges of

messages between these workers, and (iii) required supersteps

in order to synchronize the components executions. In each

superstep, every worker execute a task consisting in local

processing, receiving and sending messages. Workers start the

next superstep (barrier synchronization, Figure 2-(b)) just after

the present one has been finished by all workers. A BSP

program is a sequence of such supersteps.

One of the first implementations of BSP is Pregel [7]. It pro-

poses a native interface expressly for programming algorithms

on graph, and hides the details of communication between

workers. Pregel uses a computing model said to be ”think like

a vertex”. The computation of graph is described in terms

of what each graph node (vertex) has to compute; edges are

communication channels between vertices. During a superstep,

each active vertex run a function defined by the user and

called compute(), may receive or send messages from or

to some other vertices.The barrier of synchronization ensures

that a message sent in a superstep will be available in the next

superstep at its target vertices. A vertex can ask to become

inactive during any superstep (function voteToHalt() call)

and will wake up if it receives a message. When all vertices

are inactive, and no other message is to be received, Pregel

terminates. Remark that the implementation of Pregel provided

by Google is not available publicly, but it exists other open

source options, like Apache Giraph [31], that we use for our

experiments.

IV. EXPERIMENTS

In this section, we will present the experiments we con-

ducted in order to experimentally validate some of our propo-

sitions. It is about automata intersection (Section IV-A) and

automata minimization (Section IV-B).

For the experiments, we used a Hadoop cluster of four

computers, with one Namenode and three Datanodes, running

Linux Mint with Linux Kernels ”5.*” and having 4 Go of

memory. This cluster is rather modest but it was able to meet

our goal. An overview of the characteristics is given below.

Hadoop 2.4.0; Giraph 1.1.0; Openjdk 1.8.*
NAMENODE ## % Role of Master Node

+ 120 Go Hard Disk. 4 Go RAM.

+ Linux Mint 19.3 Cinnamon.

+ Linux Kernel 5.0.0-32-generic.

+ CPU Intel Core i5-3570 CPU @ 3.40GHz x 4

DATANODES ## % Role of Worker Nodes

DATA_NODE_1 & DATA_NODE_2

+ 500 Go Hard Disk. 4 Go RAM.

+ Linux Mint 20.1 Cinnamon.

+ Linux Kernel 5.4.0-58-generic.

+ CPU Intel Core i3 CPU 540 @ 3.07GHz x 2

DATA_NODE_3

+ 500 GoHard Disk. 4 Go RAM.

+ Linux Mint 20.1 Cinnamon.

+ Linux Kernel 5.4.0-58-generic.

+ CPU Intel Core i3-2120 CPU @ 3.30GHz x 2

All input data are stored in HDFS, as well as programs

outputs. For iterative programs with MapReduce, we needed

to write shell (bash) scripts in order to execute rounds one

after the other, manage inputs of following rounds depending

of previous outputs, and manage stop conditions.

A. Automata Intersection

Given m NFAs A1, · · · , Am, their intersection is the au-

tomaton I that accepts only words accepted by all the m
NFAs. In other words, the intersection is such that L(I) =
L(A1) ∩ · · · ∩ L(Am). The intersection can be processed

by the Cartesian construct. For instance, given two NFAs

A1 = (Σ, V1, vi1, δ1, F1) and A2 = (Σ, V2, vi2, δ2, F2), an

intersection A, such that L(A1) ∩ L(A2) = L(A), can

be obtained by the Cartesian construct A = A1 ⊗ A2 =
(Σ, V, vi, δ, F) such that V = V1 × V2, vi = (vi1, vi2),
F = F1 × F2 and δ : (V1 × V2) × Σ → 2V1×V2 , with

(w1, w2) ∈ δ((v1, v2), σ) if and only if, for a given σ ∈ Σ,

w1 ∈ δ1(v1, σ) and w2 ∈ δ2(v2, σ). This algorithm can be

easily implemented when data are in a single computer (non

distributed) and thus it will not be scalable. We focus our study

on distributed solutions.

1) MapReduce-Based Solution: When we consider NFAs

intersection A1⊗· · ·⊗Am, 3 variants of a MapReduce solution

that uses the Cartesian construct are presented in [10]. In

our work, we consider and implement the mapping based

on symbols. The MapReduce solution is done in such a

way that there is one reducer for each of the alphabet

labels or symbols. From edge (transition) (vi, σ, wi) of au-

tomaton Ai, a mapper will generate the key-value pair

〈σ, (vi, σ, wi)〉. Thus, after having received inputs {(vi, σ, wi)}
for i = 1, · · · ,m, the designated reducer will output transi-

tions {((v1, · · · , vm), σ, (w1, · · · , wm))}.
Nevertheless, this solution is costly. For instance, if we have

m input automata, with n states each, their method may output

an NFA with around nm vertices at least, and many of these

vertices may be useless. A useless vertice is a vertex from

which a final vertex can’t be reached (dead vertex) or that can’t

be reached from the initial vertex. Deleting useless vertices

doesn’t change the accepted language. For that matter, authors

planned as perspective to ”investigate reducing the number of

states in the product automaton, ...” [10]. This aim is likely

to be difficult or costly to meet with MapReduce model.

(a)
 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 400 700 1000

T
im

e
(m

n)

Input Size (Ko)

Automata intersection with MR:
 Input sizes and corresponding executions times

Non-empty intersection
Empty intersection

(b)
 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 100 400 700 1000

O
ut

pu
t S

iz
e

(K
o)

Input Size (Ko)

Automata intersection with MR:
 Input sizes and corresponding output sizes

Non-empty intersection
Empty intersection

Fig. 3. Influence of input size on execution time and output size

We implement this solution on two automata with an

alphabet of 4 symbols and by varying the autmata sizes. The

results are depicted in Figure 3. Works in [10] only evaluate

processing times for two methods by varying the alphabet size.

We did the same (Figure 3-(a)) and our curve have the same

look. But we also evaluate the influence of the size of input

automata on output size (Figure 3-(b)).

The observations we can have are listed below:

1) An empty intersection is an intersection that leads to an

empty language, that is, no word is accepted by both

automata. In Figure 3, execution times are the same for

empty and non-empty intersections. It is a similar state

of affairs for their output sizes. This is a predictable

result since the algorithm cannot avoid producing all

vertices combinations, no matter if the result will be

empty or not.

2) We have a growth worse than quadratic of the output

size, thus as well as the execution time. We recall that

if we have m input automata, with n states each, the

algorithm may output an NFA with around nm vertices

at least, and many of these vertices may be useless.

In our case, m = 2. In addition, storing states and

transitions of the output automaton (intersection) costs

more space than storing states and transitions of an input

automaton since states of the product automaton, in our

case, are pairs of input automata states. Finally, If we

were varying the number of input automata, we would

have an exponential growth for both execution time and

output size.

TABLE I
DETAILS ON DATA CONFIGURATION RELATED TO EXPERIMENTS IN

FIGURE 3.

Input size ⇓ E
x
ecu

tio
n

tim
e

N
u
m

b
er

o
f

states
o
f

1
in

p
u
t

F
S

A

N
u
m

b
er

o
f

tran
s.

o
f

1
in

p
u
t

F
S

A

O
u
tp

u
t

size

N
u
m

b
er

o
f

tran
s.

o
f

o
u
tp

u
t

F
S

A

124 Ko 37.46 s 72 5,184 167.5 Mo 7,487,245

208 Ko 72.66 s 93 8,649 461.4 Mo 20,517,192

564 Ko 284.60 s 150 22,500 3.2 Go 137,102,413

748 Ko 502.44 s 172 29,584 5.6 Go 235,690,872

1 Mo 869.77 s 200 80,802 10.4Go 431,442,279

For the sake of completeness, we give in Table I some other

details on our data configuration. The two input automata have

the same configuration (number of states and transitions), but

the nature of transitions are different (considering labels). Only

non-empty intersection is considered since the algorithm has

the same behavior as empty intersection.

2) Memory-Based Solution: In [25], we proposed a BSP-

Based Approach for NFAs intersection, an in-memory ap-

proach in order to give a better alternative to the MapReduce

solution proposed in [10], and whose experiments results are

presented above. We recall the ”compute()” function (Algo-

rithm 1) that will be run during the system execution by every

active vertex.

Unfortunately, we didn’t implement Algorithm 1 for the

pure and simple reason that our contribution in [25] in

comparison to the works in [10] is more related to the space

complexity than execution time. In fact since it is a one round

MapReduce algorithm, the execution time would be almost

the same as our Giraph algotihm with some supersteps, or

less costly than our in-memory solution when the number

of supersteps is large. Experiments would be better, even if

we know that RAM access time is negligible. This will be

illustrated by experiments presented in Section IV-B.

3) Analysis: The observations we can have, when we com-

pare the MapReduce solution and our in-memory alternative

are listed below:

• As we previously said, the main advantage of our solution

in relation to the MapReduce proposition is the state

complexity. Intrinsically, we cannot produce a vertex

unreachable from the initial one, since Algorithm 1 starts

Algorithm 1 compute(vertex v ,messages m)

1: if (PRODUCTION_SUPERSTEP) then
2: if (superstep = 0) then
3: if (v.isInitialSimpleState()) then
4: Let ⊗p0 ← (vi1, · · · , vim);
5: createV ertex(⊗p0);
6: sendMessage(⊗p0.ID, ik)
7: end if
8: else
9: if (m 6= ∅ ∧ !v.isV isited()) then

10: Let ⊗p← (p1, · · · , pm);
11: Let δi ← getEdges(pi.ID,m)

12: Let ⊗Σ←
⋂

i

{

σ ∈ Σ | ∃qi ∈ Qi : qi ∈ δi(pi, σ)
}

;

13: for each σ ∈ ⊗Σ do
14: for each tuple (q1, · · · , qn) such that qi ∈ δi(pi, σ)

do
15: Let ⊗q ← (q1, · · · , qm);
16: createV ertex(⊗q);
17: createEdge(⊗p, σ,⊗q);
18: sendMessage(⊗q.ID, qi);
19: end for
20: end for
21: v.setV isited(TRUE);
22: end if
23: end if
24: else
25: for each ⊗p.ID in m do
26: sendMessage(v.getEdges(),⊗p.ID)
27: end for
28: end if

29: v.voteToHalt();

by the initial vertex (vi1, · · · , vim) and moves forward

to the next new state only if a common label can be read.

1) The first consequence is that a lot of useless states

will not be produced, contrary to the MapReduce

solution.

2) The second consequence is, in the case of empty

intersection, the whole process will stop as soon

as the emptiness is detected; while MapReduce

solution would continue be that as it may.

These positive points have been possible thanks to BSP

model and the Giraph ”think like a vertex” programming

paradigm which is more suitable, intuitive and expressive in

order to address graph algorithms.

B. Automata Minimization

A DFA M is said to be minimal if and only if all DFAs

D accepting the same language (L(M) = L(D)) have at

least as many vertices (states) as M. The process that finds

the minimal DFA M from a DFA D is called Minimization.

Based on a taxonomy given in [32], most of algorithms for

the minimization of an automaton, like Hopcroft’s [33] and

Moore’s [34], are based on the notion of equivalent classes

regarding automaton states. There is one exception based on

a alternating of reversal and determinization, and it is about

Brzozowski’s algorithm [35].

MapReduce implementations of Hopcroft’s and Moore’s

algorithms for automaton minimization are described in [11],

as well as experiments and analysis. We decided to focus only

on Moore’s algorithm (Algorithm 2), and then we proposed a

memory-based alternative in [26], accompanied by a compara-

tive study. In this section, we therefore present the comparative

experiments we did on these two solutions.

Algorithm 2 An adaptation by [11] of the Moore’s algo-

rithm [34].

Input: A DFA A = (Σ = {a1, · · · , ak}, V, vi, δ, F)
Output: π = V/≡

1: i← 0
2: for all v ∈ V
3: if v ∈ F then

4: πi
v ← 1

5: else

6: πi
v ← 0

7: end if

8: end for

9: repeat

10: i← i+ 1
11: for all v ∈ V
12: πi

v ← πi−1
v · πi−1

δ(v,a1)
· πi−1

δ(v,a2)
· . . . ·πi−1

δ(v,ak)
13: end for

14: until |πi| = |πi−1|

1) MapReduce-Based Solution: Moore’s algorithm [11] is

composed of a preprocessing step, and a number of MapRe-

duce rounds. Due to the nature of MapReduce and to the

fact that the algorithm is an iterative refinement of the initial

equivalence class, authors had to create and maintain a data

structure (set ∆) in order to help them transferring data from

one round to another. In fact [7], MapReduce is fundamentally

functional, thus expressing an algorithm on graph as a series

of MapReduces needs passing the whole graph state from one

round to the following, often requiring a lot of communication

and corresponding overhead. In the present case, mappers will

use part of ∆ and output specific data going to reducers. The

latter will then output new (identifiers of) equivalence classes

and update ∆. Of course it would be much better if we could

avoid using a non-intuitive set like ∆. Luckily, our memory-

based solution [26] will not only avoid this extra data set, but

also will speed the execution up.

Given a n-states automaton A, it is proved that in the worst

case, ≡ = ≡n−2 [34]. So in the worst case, Moore’s algorithm

needs (n− 1) rounds.

2) Memory-Based Solution: Given an automaton A =
(Σ = {a1, · · · , ak}, V, vi, δ, F), we propose in [26] a Giraph

"compute()" function in order to minimize A. Our solution

is inspired by the one of MapReduce (equivalence classes) and

has the same programming style as Algorithm 1. We therefore

don’t put here this "compute()" function.

Our memory-based solution needs as many supersteps as

2 times the number of needed MapReduce rounds. In fact,

half of our supersteps are devoted to sending data. Despite

this fact, our implementation is by a long way faster than the

MapReduce’s one when we consider speed ratio between disk

and RAM accesses. We recall that MapReduce model is in

pain due to excessive ”shuffle & sort” and input/output with

disk (HDFS) at each round, whereas Giraph is memory-based.

3) Analysis: We have implemented MapReduce Moore’s

algorithm proposed in [11], as well as our in-memory al-

ternative presented in [26], and the comparative analysis is

illustrated in Figures 4-(a), 4-(b), 4-(c) and 4-(d). The

experiments will be analyzed below.

The curve in Figure 4-(a) shows the number of states of

the input automaton and the corresponding number of states

of the output (minimized) automaton. We could indifferently

plot MapReduce or Giraph data since they are exactly the

same: same input automaton, same algorithm, so we have the

same output automaton. We draw the first bisector in order to

emphasize that the input automaton is really reduced. In fact,

all the curve is under this bisector and this means that the

number of input automaton states is greater than the number

of output automaton states. A first important remark is that (1)

the curve is neither increasing nor decreasing, which means

that the size of the output automaton is not proportional to the

size of the input one. For instance, an automaton can be more

reduced than a smaller one (a 71-states automaton is reduced

to a 9-states one while a 37-states automaton is reduced to

a 15-states one). In addition, we enrich the curve by adding

the number of MapReduce rounds (iterations). For instance,

the algorithm needs 4 iterations to reduce an input automaton

from 71 states to 9 states. A second important remark is that

(2) the number of required MapReduce rounds (or Giraph

supersteps) is not proportional to the number of the automaton

states, that is why the number of rounds is neither increasing

nor decreasing depending on the number of automaton states.

Remarks (1) and (2) indicate that the automaton reduction

rate, as well as the number of required MapReduce rounds,

depend on some other characteristics of the automaton, and

not directly on its size.

The curve in Figure 4-(b) shows the number of MapReduce

rounds and the corresponding number of states of the output

(minimized) automaton. The curve is enriched by adding

the numbers of input states, and this clearly shows that the

automaton is really reduced. As for what we said concerning

Figure 4-(a), the number of output states is not proportional

to the number of rounds (see the case of runs requiring 6 and

8 rounds).

The curve in Figure 4-(c) shows principally the number of

MapReduce rounds (as well as the number of Giraph super-

steps) and the corresponding output sizes of the algorithms

(left y axis). We recall that the number of required MapReduce

rounds is two times the number of Giraph supersteps. The

Giraph curve is then enriched by the number of required

supersteps (SS). In addition, we also give the input size

(right y axis) for each point of the curves. We can point

out two observations. (1) Both outputs of MapReduce and

Giraph exponentially increase at each round. The reason is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

ou

tp
ut

 s
ta

te
s

input states

Automata Minimization :
 number of input states and corresponding output states

MapReduce

3
ite

r.
2

ite
r.

5
ite

r.
8

ite
r.

9
ite

r.
12

 it
er

.

6
ite

r.

4
ite

r.

first bisector (y=x)

(a)

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12

ou

tp
ut

 s
ta

te
s

MR_rounds

Automata Minimization :
 number of MR rounds and corresponding output states

MapReduce

10
 in

p.
 S

ta
.

8
in

p.
 S

ta
.

71
 in

p.
 S

ta
. 36

 in
p.

 S
ta

. 51
 in

p.
 S

ta
.

36
 in

p.
 S

ta
.

36
 in

p.
 S

ta
. 37

 in
p.

 S
ta

.

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8 9
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

O
ut

pu
t S

iz
e

(M
o)

in
pu

t S
iz

e
(K

o)
#MR_rounds

Automata Minimization :
 number of MR rounds and corresponding output sizes (left)

 input sizes (right)

Giraph (left)

4
SS

6
SS

8
SS

10
 S

S

12
 S

S 16
 S

S

18
 S

S

MapReduce (left)
input size (right)

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12

T
im

e
(s

)

#MR_rounds

Automata Minimization :
 number of MR rounds and corresponding execution times

Giraph

4
SS

6
SS

8
SS

10
 S

S

12
 S

S

16
 S

S

18
 S

S

24
 S

S

MapReduce

(d)

Fig. 4. Compratative minimization with MapReduce and Giraph.

that the algorithm we decided to implement (Algorithm 2, an

adaptation by [11] of the Moore’s algorithm [34]) uses strings

of bits to identify states (equivalence classes) of the output

automaton. In fact, the class identifiers πp consist of (k + 1)
of previous round, k being the size of the alphabet. That is

why the output size has an exponential growth. We inherit

this bit-string representation from the algorithm we decided

to implement. (2) The growth of MapReduce outputs is by far

faster than the ones of Giraph. For instance, when the Giraph

output size is 2Mo, the one of MapReduce is more than 8 Mo

(for times larger). And this ratio increases as a function of the

number of rounds. The reason is that MapReduce solution uses

a data structure ∆, and the latter also stores class identifiers

πp many times. We recall that they use ∆ in order to help

them transferring data from one round to another. Fortunately,

our Giraph solution doesn’t need such a data structure.

The curve in Figure 4-(d) shows the number of MapReduce

rounds (as well as the number of Giraph supersteps) and the

corresponding execution times of the two algorithms. Despite

the fact that our in-memory solution needs two times the

number of iterations of the one of MapReduce, it appears

clearly that our in-memory solution is by far faster than

MapReduce. For instance, for 12 MapReduce rounds (24

Giraph supersteps), MapReduce needs around 6 minutes while

Giraph needs only 25 seconds. We recall that MapReduce

model is in pain due to excessive ”shuffle & sort” and

input/output with disk (HDFS) at each round, whereas Giraph

is memory-based.

V. CONCLUSION

In this work, we developed and studied some implemen-

tations in Map-Reduce and Giraph of two algorithms for

intersecting NFAs and minimizing DFAs. In fact, we imple-

ment the NFAs intersection in MapReduce and compare it

with our memory-based solution. We also implement, compare

and analyze DFA minimization algorithms in MapReduce and

giraph. We give information on our experiments environment

and the results are depicted in some figures.

Generally, two important things have to be captured con-

cerning the benefit of using in-memory and ”think like a ver-

tex” paradigm. First of all, the BSP paradigm is more suitable

to express graph oriented algorithms. This is what allows us

to avoid generating useless data in our intersection algorithm,

and makes unnecessary the use and the maintenance of a quite

counterintuitive data structure. Secondly, and obviously, the

use of an in-memory platform has sped the execution up.

This work being done, the next step is to identify program-

ming building blocks to use in a higher level language for

distributed large graphs, considering that the distribution will

be hidden at most.

REFERENCES

[1] B. Ravikumar and X. Xiong, “A parallel algorithm for minimization of
finite automata,” in Proceedings of IPPS ’96, The 10th International

Parallel Processing Symposium, April 15-19, Honolulu, USA. IEEE
Computer Society, 1996, pp. 187–191.

[2] A. Tewari, U. Srivastava, and P. Gupta, “A parallel DFA minimization
algorithm,” in High Performance Computing - HiPC 2002, 9th Inter-
national Conference, Bangalore, India, December 18-21, ser. Lecture
Notes in Computer Science, S. Sahni, V. K. Prasanna, and U. Shukla,
Eds., vol. 2552. Springer, 2002, pp. 34–40.

[3] V. Slavici, D. Kunkle, G. Cooperman, and S. Linton, “Finding the
minimal DFA of very large finite state automata with an application
to token passing networks,” CoRR, vol. abs/1103.5736, 2011.

[4] The Apache Software Foundation, “Apache hadoop,”
https://hadoop.apache.org/.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107113, Jan. 2008.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
graph: Distributed graph-parallel computation on natural graphs,” in 10th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI 2012, Hollywood, CA, USA, October 8-10, C. Thekkath and
A. Vahdat, Eds., 2012, pp. 17–30.

[7] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,

USA, June 6-10. ACM, 2010, pp. 135–146.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
in the cloud,” PVLDB, vol. 5, no. 8, pp. 716–727, 2012.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in 11th USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8,
J. Flinn and H. Levy, Eds., 2014, pp. 599–613.

[10] G. Grahne, S. Harrafi, A. Moallemi, and A. Onet, “Computing NFA
intersections in map-reduce,” in Proceedings of the Workshops of the
EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium,

March 27th, 2015, ser. CEUR Workshop Proceedings, P. M. Fischer,
G. Alonso, M. Arenas, and F. Geerts, Eds., vol. 1330. CEUR-WS.org,
2015, pp. 42–45.

[11] G. Grahne, S. Harrafi, I. Hedayati, and A. Moallemi, “DFA mini-
mization in map-reduce,” in Proceedings of the 3rd ACM SIGMOD

Workshop on Algorithms and Systems for MapReduce and Beyond,

BeyondMR@SIGMOD 2016, San Francisco, CA, USA, July 1, 2016,
F. N. Afrati, J. Sroka, and J. Hidders, Eds. ACM, 2016, p. 4.

[12] S. Aridhi, P. Lacomme, L. Ren, and B. Vincent, “A mapreduce-based
approach for shortest path problem in large-scale networks,” Eng. Appl.

Artif. Intell., vol. 41, 2015.

[13] S. Lattanzi and V. S. Mirrokni, “Distributed graph algorithmics: Theory
and practice,” in WSDM, 2015, pp. 419–420. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2697043

[14] J. Cohen, “Graph twiddling in a mapreduce world,” Comput. Sci. Eng.,
vol. 11, no. 4, pp. 29–41, 2009.

[15] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii, “Filtering: a method
for solving graph problems in mapreduce,” in SPAA 2011: Proceedings

of the 23rd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with

FCRC 2011), R. Rajaraman and F. M. auf der Heide, Eds. ACM,
2011, pp. 85–94.

[16] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific com-
puting problems to clouds using mapreduce,” Future Gener. Comput.
Syst., vol. 28, no. 1, pp. 184–192, 2012.

[17] V. Slavici, “Scaling up scientific computations by using map-reduce-like
control flow on numa architectures,” Ph.D. dissertation, USA, 2013.

[18] L. Diop and C. Ba, “Parallelization of sequential pattern sampling,” in
2021 IEEE International Conference on Big Data (Big Data), Orlando,

FL, USA, December 15-18, 2021. IEEE, 2021, pp. 5882–5884. [Online].
Available: https://doi.org/10.1109/BigData52589.2021.9672071

[19] ——, “Parallélisation de l’échantillonnage de motifs séquentiels,” in
Extraction et Gestion des Connaissances, EGC 2021, 25-29 Janvier

2021, Montpellier, France, ser. RNTI, J. Azé and V. Lemaire, Eds.,
vol. E-37. Éditions RNTI, 2021, pp. 245–252. [Online]. Available:
http://editions-rnti.fr/?inprocid=1002653

[20] X. Wang, L. Qin, L. Chang, Y. Zhang, D. Wen, and X. Lin,
“Graph3s: A simple, speedy and scalable distributed graph processing
system,” CoRR, vol. abs/2003.00680, 2020. [Online]. Available:
https://arxiv.org/abs/2003.00680

[21] K. Ammar and M. T. Özsu, “Experimental analysis of distributed graph
systems,” PVLDB, vol. 11, no. 10, pp. 1151–1164, 2018.

[22] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,
“An experimental comparison of pregel-like graph processing systems,”
PVLDB, vol. 7, no. 12, pp. 1047–1058, 2014.

[23] D. Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng, “Big graph
analytics systems,” in Proceedings of the 2016 International Conference

on Management of Data, SIGMOD Conference 2016, San Francisco,

CA, USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika, and S. Madden,
Eds. ACM, 2016, pp. 2241–2243.

[24] J. Koch, C. L. Staudt, M. Vogel, and H. Meyerhenke, “An empirical
comparison of big graph frameworks in the context of network analysis,”
Social Netw. Analys. Mining, vol. 6, no. 1, pp. 84:1–84:20, 2016.

[25] C. Ba and A. Gueye, “A BSP based approach for nfas intersection,”
in Algorithms and Architectures for Parallel Processing - 20th

International Conference, ICA3PP 2020, New York City, NY, USA,
October 2-4, 2020, Proceedings, Part I, ser. Lecture Notes in Computer
Science, M. Qiu, Ed., vol. 12452. Springer, 2020, pp. 344–354.
[Online]. Available: https://doi.org/10.1007/978-3-030-60245-1 24

[26] A. M. Diop and C. Ba, “A distributed memory-based minimization
of large-scale automata,” in Research in Computer Science and Its

Applications, Y. Faye, A. Gueye, B. Gueye, D. Diongue, E. H. M. Nguer,
and M. Ba, Eds. Cham: Springer International Publishing, 2021, pp.
3–14.

[27] C. BA and A. GUEYE, “On the distributed determinization of large
nfas,” in 2020 IEEE 14th International Conference on Application of

Information and Communication Technologies (AICT), Oct 2020, pp.
1–6.

[28] C. BA, “A comparative study of large automata distributed processing,”
in 2022 IEEE 16th International Conference on Application of Informa-

tion and Communication Technologies (AICT), Oct 2022.
[29] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.
[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing,” in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation, NSDI 2012,
San Jose, CA, USA, April 25-27, 2012, S. D. Gribble and
D. Katabi, Eds. USENIX Association, 2012, pp. 15–28. [On-
line]. Available: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia

[31] The Apache Software Foundation, “Apache giraph,”
https://giraph.apache.org/.

[32] B. Watson, “A taxonomy of finite automata minimization algorithms,”
1993.

[33] J. E. Hopcroft, “An n log n algorithm for minimizing states in a finite
automaton,” Stanford, CA, USA, Tech. Rep., 1971.

[34] E. F. Moore, “Gedanken-experiments on sequential machines,” in Au-

tomata Studies, C. Shannon and J. McCarthy, Eds. Princeton, NJ:
Princeton University Press, 1956, pp. 129–153.

[35] J. Brzozowski, “Canonical regular expressions and minimal state graphs
for definite events,” 1962.

