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Abstract—Many systems generate heavy-tailed data sets within
the Site Reliability Engineering (SRE) domain. Such datasets are
composed of many small and few large observations. Fitting such
datasets to known continuous distributions can be challenging
due to the pronounced ‘head’ and long ‘tail’ of said datasets.
This study considers a novel technique to split a dataset into
two parts (head and tail) to allow for subsequent data modelling
using existing fitting techniques. Using two test system datasets,
we address whether a dataset can be modelled by its distribution
‘head’ and ‘tail’. Our framework can aid SRE teams in modelling
their datasets without resorting to non-parametric approaches
such as Kernel Density Estimation (KDE).

I. INTRODUCTION

II. BACKGROUND AND RELATED RESEARCH

A. Distribution Fitting

Distribution fitting is determining whether empirical data
fits a known distribution type. The main interest of this tech-
nique is to predict the probability or to forecast the frequency
of occurrence of an event at a distinct interval.

There are many techniques to determine the goodness of
fit (GoF) of a distribution to empirical data. The two most
commonly used techniques are discussed briefly.

The Cramér–von Mises criterion [7] [8] is a non-parametric
approach that compares the goodness of fit of a cumulative
distribution function (CDF) to that of an empirical density
function (EMF). Using a significance test, we can test a hy-
pothesis of whether a data set is from a probability distribution.

The Anderson–Darling test [9] [10] is a statistical test
of whether a given sample of data is taken from a proba-
bility distribution. This test is an improvement of the Kol-
mogorov–Smirnov test as it gives more weight to the tails of
data. As a result, such a test may be more sympathetic to
heavy-tailed data.

B. Histogram Binning

A histogram is an approximate graphical representation of
a univariate dataset. Karl Pearson is credited with introducing
the term in 1895 [11]. A histogram arranges data in a series
of ‘bins’ along the x-axis, while the frequency or density of
each bin is aligned to the y-axis.

There are many ways to represent the histogram regarding
the number of bins. Too few bins will provide a coarse view of
the data distribution, while many bins provide a fine-grained

view. We consider three of the most common ways to calculate
the number of bins.

In 1926 Sturges provided one of the first techniques to rep-
resent the number of bandwidths using the following formula:

k = [log2n] + 1 (1)

Sturges’ formula is based on a binomial distribution which
can also be used to approximate the normal distribution.
Indeed Sturges’ formula works best when a normal distribution
is assumed. Otherwise, the histogram may provide an over-
smooth histogram shape [12].

In 1981 Freedman and Diaconis [13] provided an additional
technique designed to minimize the difference between the
area under the empirical probability distribution and the area
under the theoretical probability distribution.

David Scott proposed a method most suited to normally
distributed data that minimises the integrated mean squared
error in the bin [14].

C. Data Clustering Segmentation
Data Clustering arranges objects of a similar type into a

defined shape known as a cluster. There are multiple ways
to cluster data. The two most common types are centroid-
based and hierarchal-based. Centroid-based clustering involves
selecting a series of centroids to fix a series of clusters.
Algorithms such as k-means arrange objects within a dataset
around these predefined centroids based on Euclidian distance
estimation [15].

Hierarchal-based clustering (HCA) relates to the idea that
similar objects are more related based on their proximity.
HCA can work in two ways: the Agglomerative (Bottom-
up) approach. Each object starts as an individual cluster, and
similar clusters are merged until the top of the hierarchy is
reached. The Divisive (Top-down) approach works oppositely.
All observations start as a single cluster; splitting occurs until
the bottom of the hierarchy is reached [16].

Kneedling can be defined as identifying a point at which
a computer system transitions from one state to another [24]
in terms of an observable measurement. One such transition
could be a series of short and long inter-arrival times observed
between application server jobs. Determining such transition
points known as ‘knees’ or ‘elbows’ is a source of much prior
work, which we consider in the next subsection.



D. Mixture Distributions

A mixture distribution is a collection of two or more
probability distributions, which can be used to express the
density of measured observations more accurately [18]. A
mixture distribution can be a collection of either homogeneous
(e.g. Two Weibull distributions) or heterogeneous (e.g. A
Normal and a Cauchy) distributions.

Mixture distributions are used where a subpopulation of data
has a distinct series of characteristics that cannot be modelled
effectively with a single distribution type.

E. Studies related to Data Segmentation

Salvador and Chan [19] introduce a technique known as
the ”L-Method” to estimate the number of clusters as part
of a hierarchal clustering process. The authors construct an
evaluation graph where the x-axis is the number of clusters,
and the y-axis is the value of the similarity function. The
‘knee’ of this evaluation graph determines the number of
clusters to return.

Zhao et al. [20] extend the L-Method using an angle-
based approach. Their angle-based approach calculates the
local minima of successive differences for a triple of points:

y1 + y3− 2y2 (2)

If the sum of the differences is 0, the line is straight; if the
sum is > 0 or < 0, a positive or negative knee (elbow) is
detected.

Milligan and Cooper evaluate thirty algorithms to determine
the number of clusters in synthetic datasets [21]. The authors
found that Calanski and Harabasz technique performed best.
However, they caution that the results may be data-dependent.

Baxter and Oliver [22] provide a technique to determine the
minimum message length for stating the region boundaries of
one and two-dimensional examples. Through a simulation pro-
cess, the authors could identify single and multiple boundaries.

In summary, data segmentation and distribution fitting are
useful techniques to determine the underlying structure of a
dataset. Additionally, where inferences cannot be made on the
dataset, segmentation and clustering techniques have proven
useful in dividing the data more meaningfully.

III. DATASET AND METHOD

IV. RESULTS

V. DISCUSSION

CONCLUSION
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