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Abstract—Machine learning techniques have gained significant
traction in supply chain forecasting, driven by the increasing
availability of data assets. These techniques offer opportunities
to optimize management processes, reduce operational costs, and
enhance decision-making for enterprise success. However, conven-
tional statistical approaches dominating time series forecasting,
such as the Autoregressive-moving-average model (ARMA), dy-
namic regression, and unobserved component models (UCMs),
suffer from limitations in model accuracy and performance.
They struggle to handle batch processing, large-scale big data,
uncertainty-induced disruptions, and the synchronization of de-
mand and supply scenarios. To address these challenges, we
propose a class of ensemble techniques that combine neural
networks with baseline models. Firstly, we conduct classification
and segmentation by leveraging feature engineering on signal
components, such as spikes and anomalies as outlier skews,
to capture the complexity of combined scenarios in categorical
data hierarchies and identify patterns for ensemble forecasting.
Subsequently, we employ an ensemble model equipped with time
series pattern sensors to automatically discern signal components,
encompassing seasonality, promotions, trends, and intermittent
or discontinued activities. We evaluate the performance of eight
commonly-used model categories, and our proposed ensemble
modeling approaches exhibit substantial improvements in accu-
racy compared to individual baseline models and other univariate
time series algorithms.

Index Terms—Ensemble models, time series forecasting, large-
scale data, supply chain, neural networks, stacking techniques

I. INTRODUCTION

The advent of the digitalization revolution has ushered in
a new era for enterprises, propelling them towards Industry
4.0 [1]. This transformation has permeated all facets of the
supply chain [2], encompassing procurement, manufacturing,
engineering, and customer management. Against the back-
drop of complex decision-making scenarios, encompassing
considerations of globalization versus localization [3], rapidly
evolving technologies, and increasingly demanding customers,
demand forecasting [4] within the corporate supply chain plays
a pivotal role in satisfying customer requirements and gaining
a competitive edge.

Demand forecasting represents the primary source of vari-
ance and uncertainty in integrated business planning (IBP), a
process integral to strategic management systems. Its overar-
ching aim is to identify improvement opportunities and define
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actionable steps involving all stakeholders. Enhancing demand
forecasting yields a multiplier effect as it permeates the IBP
process, influencing nearly every component within the supply
chain. Even minor enhancements in forecasting capabilities
can exert significant impact on revenue, costs, profitability,
customer satisfaction, and working capital, surpassing the
influence of other supply-oriented or non-supply-oriented el-
ements. IBP, in general, entails managing vast quantities of
disconnected data, rendering it one of the most structurally
complex processes in business operations. By leveraging clas-
sification and segmentation techniques, the efficiency of this
process can be augmented, leading to cost reduction, expedited
predictions, and informed decision-making. Consequently, the
supply chain management team can allocate more time to
value-adding activities.

A. Ensemble Models vs Traditional Time Series Forecasting

Supply chain forecasting plays a critical role in enabling
organizations to optimize their management processes, reduce
operational costs, and make informed decisions for achieving
success in the dynamic business landscape. With the increasing
availability of data assets, machine learning techniques have
emerged as a powerful tool in supply chain forecasting.
These techniques offer promising opportunities to overcome
the limitations of conventional statistical approaches, such as
the Autoregressive-moving-average model (ARMA), dynamic
regression, and unobserved component models (UCMs). While
these traditional methods have been widely used, they often
fall short in terms of model accuracy and performance, partic-
ularly when confronted with challenges like batch processing,
handling large-scale big data, managing uncertainty-induced
disruptions, and effectively synchronizing demand and supply
scenarios.

To address the aforementioned challenges, we propose
a novel class of ensemble techniques that combine neural
networks with baseline models. Our approach leverages the
power of machine learning to enhance supply chain forecasting
accuracy and performance. The first step involves conducting
classification and segmentation by employing feature engineer-
ing on signal components. This enables us to capture the inher-
ent complexity of combined scenarios present in categorical
data hierarchies and identify relevant patterns for ensemble



forecasting. By effectively analyzing and distinguishing signal
components, including spikes, anomalies, and outlier skews,
we can gain deeper insights into the underlying patterns and
dynamics of the supply chain.

Furthermore, we employ an ensemble model that is
equipped with specialized time series pattern sensors. These
sensors enable the automatic differentiation of various signal
components, encompassing seasonality, promotions, trends,
and intermittent or discontinued activities. By utilizing these
sensors, we can effectively capture and utilize the valuable in-
formation embedded in the time series data, thereby enhancing
the accuracy and reliability of the forecasting process.

To assess the effectiveness of our proposed ensemble mod-
eling approaches, we evaluate their performance against eight
commonly-used model categories. The results demonstrate
substantial improvements in accuracy when compared to in-
dividual baseline models and other univariate time series
algorithms. These findings underscore the potential of our
ensemble techniques in revolutionizing supply chain forecast-
ing and enabling organizations to make more accurate and
informed decisions, ultimately leading to enhanced operational
efficiency and competitiveness.

Traditional time series forecasting models utilize a distur-
bance filter and potentially incorporate one or more inputs
to characterize the behavior of a time series based on its
lagged values. The first-order autoregressive (AR) model, a
fundamental time series model, offers a simple explanation of
time series behavior using initial values. The model can be
represented as:

Ye = PYi—1 +as + ¢, (D

where y; denotes the time series data at index ¢, ¢ repre-
sents the first-order autoregressive parameter, a; signifies the
randomized factor with zero mean and standardized variance
o2, and c represents a constant term. It is important to note
that as and a; are uncorrelated for any s # t, indicating a
white noise process. When the magnitude of ¢ is less than
one, the series exhibits stationarity. In the case of a stationary
time series, previous values exert an exponentially diminishing
influence on the current value. The lags associated with a time
series model can be of considerable complexity.

In time series analysis, it is common for one or more
deterministic and/or stochastic input variables, referred to as
regressor, exogenous, or explanatory variables, to have an
influence on the observed time series. This influence can either
be static or dynamic, meaning it may remain constant over
time or change over time. To gain a deeper understanding of
these inputs and their impact, a model with a time-varying
mean can be employed. The model takes the following form:

Y = e +Y(B)ay, 2

Here, p represents the mean of the series, B corresponds to
the backshift operator (such that By, = y;—1), ¥(B) denotes
the disturbance filter of either limited or infinite order, and
is a time-varying constant that describes the influence of the

inputs on the time series at each point in time. If the term
is not affected by lagged input values, the model is commonly
referred to as a regression with time series errors. Conversely,
if the term p; varies based on lagged input values, the model
is often referred to as a dynamic regression model.

This research focuses on a specific aspect of time series
modeling and does not aim to address the broader issue of a
time series model with stochastic inputs, although interven-
tions can be considered as deterministic inputs. In the context
of this study, we categorize the inputs into two types based
on their influence on the time series. Inputs that exert a static
influence are referred to as regressor variables, while those
with a dynamic influence are termed dynamic regression vari-
ables or transfer function inputs. Furthermore, it is important
to note that the time series model may incorporate various
transformations, such as logarithmic, square root, logistic, or
Box-Cox transformations, to enhance its representation and
analysis.

B. Big Data and ETL Technologies

In recent years, the use of big data technologies centered
around parallel computing has gained significant attention
from enterprises across various industries for processing large-
scale forecasting data. Big data, as defined by Gartner, refers
to information assets characterized by high volume, velocity,
and variety, requiring innovative and cost-effective methods
of information processing to gain valuable insights and facili-
tate decision-making [5]. This demand for analyzing massive
amounts of data has paved the way for a digital revolution in
demand forecasting.

To address the challenges associated with big data forecast-
ing, we propose an extract, transform, and load (ETL) process
coupled with a MapReduce/Hadoop solution that leverages
time series signal components to differentiate between various
factors such as level, trend, seasonality, cycle, exogenous,
and irregular components. Our approach begins by modeling
classifications and segmentations of large-scale data as an
automated ETL dataset generator, relying on the component
features anticipated by traditional statistical models prior to the
training and validation processes. Additionally, we introduce
an ensemble model that enables more efficient time series
forecasting while maintaining a high level of accuracy com-
pared to baseline models and other time series approaches.
Moreover, the dynamic ETL process acts as a labeling function
for the supervised machine learning model and as a weight
categorization function for the proposed ensemble learning
approach based on stacking.

The main technical contributions of this paper are summa-
rized as follows:

« We are among the pioneers in exploring the application
of ensemble learning techniques and big data processing
systems for large-scale demand forecasting in the supply
chain domain.

« We utilize a set of time series components to represent the
features of supervised machine learning labels extracted
from the data source. The ETL process and MapReduce



solution in this study incorporate various category inputs
that partially align with existing traditional time series
models. This includes discovering distinctive short-term,
long-term, seasonal, low-volume, retired, and intermit-
tent patterns, as well as identifying groups of better-
performing models for each distinctive parameter.

o To further validate our approach, we create a mixed en-
semble model utilizing these time series parameters. The
experimental results demonstrate that our proposed en-
semble learning outperforms single-agent learning, with
the integrated ensemble model achieving the highest
classification accuracy among all compared models.

The remainder of this study is organized as follows. Section

2 provides an overview of related work. Sections 3 and
4 introduce the prediction framework and the method for
intelligent integration, respectively. Section 5 describes the
MapReduce-based data processing method and the proposed
ensemble learning techniques. The experimental setup, results,
and analysis are presented in Section 6. Finally, Section 7
concludes our work and outlines potential future directions.

II. RELATED WORK
A. ARIMA Models Trained with Voting Techniques

Autoregressive integrated moving average (ARIMA) models
have been widely used for time series forecasting over the
past three decades [6]. These models incorporate time series
integration to achieve stationarity and offer a diverse range
of prediction intervals. However, evaluating and selecting
appropriate ARIMA models can be challenging due to their
complexity, especially in the context of time series forecasting.

A voting technique based on traditional time series models
has been employed to analyze the monthly wage index of
Russian macroeconomic statistics [7]. In this approach, 2/3 of
the training set is utilized to construct ARIMA models and five
”good” models are selected for the subsequent stage. Equal
weights are assigned to their votes, and the voting approach
is applied using the remaining 1/3 of the training set. Each
chosen model generates a one-month projection, and their
predictions are compared against the actual data. The model
with the most accurate prediction receives a higher weight,
while the weights of other models are reduced, ensuring that
the combined weight remains equal to one. It is important to
note that the weights should not fall below zero during this
process [8].

Initially, all models are considered equal in terms of their
prediction quality. However, as the voting evaluation pro-
gresses, the weight of the model producing the most accurate
forecasts is increased, while the weights of other models are
decreased. This dynamic weight adjustment mechanism allows
superior models to be identified and rewarded. The approach
of combining models has demonstrated improved prediction
quality in these studies, providing a valuable framework for
evaluating models and their predictions.

Additionally, further investigation is needed to explore the
prediction intervals of mixed models. Although the combina-
tion of models often leads to comparable or even superior

forecasts, the narrowing of prediction intervals for model
combinations is still a topic of ongoing research and will be
addressed in future studies.

The concept of forecasting based on a collection of time
series models can be likened to the bagging strategy used in
classification and regression. However, it is crucial to establish
and test the specific requirements that should be met by
individual models aggregated into a set, analogous to the
constraints imposed on weak classifiers.

By leveraging voting techniques and combining ARIMA
models, this study aims to enhance the accuracy and relia-
bility of time series forecasting. The subsequent sections will
delve into the experimental setup, methodologies, and results,
providing valuable insights into the field of time series analysis
and forecasting.

B. Bagging for Time Series Forecasting

Bagging techniques have gained prominence in time series
forecasting due to their ability to improve accuracy across a
wide range of applications.

Fotios [9] proposed the Simple Combination of Univariate
Models (SCUM) technique for generating point predictions
and prediction intervals in the M4-competition entry. SCUM
combines the point forecasts and prediction intervals from four
models, namely, Exponential Smoothing, Complex Exponen-
tial Smoothing, Automatic Autoregressive Integrated Moving
Average, and Dynamic Optimized Theta, using the median
combination approach. This method performed well in the M4
competition, ranking 6th for point predictions and prediction
intervals, and 2nd and 3rd for point forecasts of weekly and
quarterly data, respectively.

Matheus [10] introduced an efficient bootstrap stacking
technique applied to the Wind energy project to enhance
its economic and environmental benefits. Forecasting time
series data for wind energy generation is challenging due
to the complex interplay of meteorological and demographic
factors. Matheus employed an ensemble learning model that
incorporates both bagging and stacking techniques to improve
short-term wind energy generation evaluations. The ensemble
model integrates samples using arithmetic and weighted aver-
age values, with weights determined through multi-objective
optimization using a non-dominated sorting genetic algorithm
of version II. Experimental results demonstrated that the
proposed ensemble learning model outperformed single fore-
casting models, including stacking, machine learning, artificial
neural networks, and statistical models, resulting in reduced
error rates for out-of-sample forecasting. These findings high-
light the effectiveness of integrating ensemble techniques for
accurate forecasting in renewable energy.

Egrioglu [11] introduced a novel bootstrapped hybrid ar-
tificial neural network (ANN) for prediction. This approach
utilizes the residual bootstrap technique to provide input
significance testing and hypothesis testing for linearity and
non-linearity. The technique employs bagging to generate
predictions and outperforms other prominent neural networks
and models in terms of prediction accuracy. Moreover, the
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Fig. 1. Flow chart of classification.

suggested method exhibits improved stability and robustness
by being less affected by initial random weights compared to
previous neural networks.

By leveraging bagging techniques in time series forecast-
ing, researchers have achieved significant improvements in
prediction accuracy across various domains. The subsequent
sections of this paper will explore the experimental setups,
methodologies, and results, providing valuable insights for the
application of bagging in time series forecasting.

III. TIME SERIES AND DEPLOYMENT FRAMEWORK IN
LARGE-SCALE DATASET

Large-scale demand forecasting is a technique used to fore-
cast the future consumption of electricity, natural gas, or other
fuels in an energy market. Large-scale demand forecasting is
one of the most important tools for planning and managing
supply systems for power plants, transmission lines, distri-
bution systems, and end users. Large-scale demand forecasts
are also useful for evaluating the economic viability of new
power plant projects. For example, the largest single-use case
for large-scale demand forecasting is predicting power plant
load factors (the percentage of time that a generator operates).
Load factor forecasts are essential to plan how much fuel
is needed to meet peak demands during periods when there
may not be enough generation available from other sources,
such as wind or solar farms. Power plants can also benefit
from this information by adjusting their operating schedules
based on expected load conditions. Let us consider a scenario
where a plant will operate longer than usual during winter
months because it has been forecasted that loads will increase
due to cold weather. In that case, we can adjust the schedule
to operate more hours per day during those colder months
and fewer hours per day in warmer months without extra
generation capacity. This allows us to maximize the amount of
money generated from each hour of operation without having
excessive generating capacity running around waiting in the
standby mode, and get ready to ramp up production when
needed by customers who have requested it through their
utility company’s call center or online portal system (e.g., PIM
Interconnection).

The ETL process extracts data from the master data in the

enterprise relational database, which defines for each combina-
tion of product and customer where sales orders should ship
from. This information is only available in the database for
distribution sales networks. Warehouse and export distribution
networks are derived based on historical shipment data in
the database and then maintained as location realignment
instructions when changes from the default are part of the
location realignment process governed by the management
team. The supply chain sends inventory to the locations where
customer services send sales orders. One of the goals of the
demand planning process is to send forecasts to the exact
location where orders will be sent so that when the orders are
received, there is inventory to fill them. This is accomplished
by taking the actual order on the shipment history, aligning
it to the default ship-from location in the master data, and
applying location realignments to history and forecast based
on the business scenario.

A. Feature Detector and Weak Learner Classifier

In this work, we first focus on feature engineering and weak
model classification. Therefore, we design an ETL MapReduce
algorithm to extract large-scale data and classify all data into
different training datasets for weak models based on the crite-
ria in time. Each time series has only one classification. Given
the classification and the series level in the data structure, the
ensemble algorithm selects the model that can handle the type
of series in the most efficient way. If the proposed algorithm
needs to choose between several models for a time series, it
lands on the simplest one that requires the least running time.
Figure 1 illustrates the Decision Tree process that this feature
detector uses to classify each data time series. The process is
carried out automatically, and the classification for the series
is stored in a column in the control table at the specific level
of the time series with labels shown in Figure 2.

The classification for each series is automatically performed,
and the resulting classification is stored in a specific level
column of the control table. The classification components of
the time series include the following:

e Trend represents the long-term pattern of a series’

means, which consists of a level and one or more move-
ment characteristics.



o Seasonality refers to the predicted deviation of series
patterns from the trend component. These deviations
follow a periodic pattern, such as 52 weeks for the
weekly series or 12 months for the monthly series. The
nature of these departures from the series can be smooth
(sinusoidal) or non-smooth.

« In contrast to the seasonal component, the cycle compo-
nent represents a regular, recurring cycle that does not
have a fixed duration. For example, one cycle may last
20 months, while the next cycle may last 25 months.

e Fxogenous effects are external factors that cause fluc-
tuations in the series but are not considered part of the
series itself. These effects can be related to or caused by
the values of another series. They are sometimes referred
to as explanatory effects, and their relationship with the
series can be concurrent or delayed. Additionally, an
“event” refers to a form of external effect, where the
occurrence or non-occurrence of the event can lead to
temporary, semi-permanent, or permanent alterations in
the series’ evolution.

o Finally, the ¢rregular component represents the resid-
ual variation that remains after accounting for all other
impacts and components. It is characterized by unpre-
dictable fluctuations. Although white noise can serve as
an irregular component, it is not necessary. The residuals
may contain local, forecastable patterns, such as autocor-
relation and moving averages.

Fig. 2. Classification design for time series units.

B. ETL Training Dataset Generator with MapReduce Design

This section presents the proposed prediction model, which
leverages the stacking integration method to enhance predic-
tion performance. The architecture of the method is depicted

in Figure 2, illustrating three key modules: data preprocessing
and feature selection, stacking ensemble training, and model
selection. These modules handle crucial tasks such as pre-
processing the data, training the basic ensemble model, and
selecting the final predictive model based on its score. The
prediction algorithm is employed to estimate the running time
of the CSM application. The monitor collects parameters,
which serve as input for the ensemble algorithm, and the
algorithm’s output includes the running time of the simulation
application and the CPU cores allocated to it.

C. Ensemble Model Predictor

The resource scheduler and simulation application scheduler
are responsible for reallocating resources and redistributing
entities within the simulation application to achieve load
balance. Specifically, when the predictor forecasts the shortest
running time for the simulation application, the resource
scheduler reallocates optimal resources for the application’s
execution. Subsequently, the simulation application scheduler
employs a comprehensive approach that minimizes synchro-
nization overhead among simulation entities while ensuring
load balancing. It redistributes the application across specified
nodes for parallel acceleration.
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Fig. 3. Forecasting model family based on classification type.

IV. PREDICTION ALGORITHM BASED ON STACKING
ENSEMBLE LEARNING

The combination of multiple models’ predictions has been
widely acknowledged as a powerful approach that outper-
forms single models and effectively reduces prediction result
variance [12]. Ensemble learning aims to create a stronger
predictor by integrating individual prediction results obtained
from various learning methods. In this paper, we propose
a prediction method based on stacking ensemble learning
(PASEL), as illustrated in Figure 6.

A. Dataset Generation

The business data is collected daily and preprocessed before
being stored in the time series database as feature data. For



Training Data

¥

Data feature selection

v

Model selection

h 4

r K-fold crossvalidation W

|t

’i

Training
frist-layer
stacking -
‘mc'alllmu ﬂl}dak\‘ =
. 15
l Predictions
¥ ¥
D@ - -
Training,
Second-
layer Model ., }17
stacking

Model scoring

Fig. 4. A schematic diagram of the PASEL prediction algorithm.

our prediction approach, we consider time series parameters
that contribute to the prediction performance. The specific
parameters used are outlined in Table L.

B. Selection of Prediction Model

Meeting the resource requirements for simulation accuracy
with a single machine learning model can be challenging. To
improve performance, the ensemble model combines multiple
basic models [13]. However, not all basic models contribute
positively to the integration model’s performance. Therefore,
a separate pre-run is conducted to pre-select machine learning
prediction models for each classification shown in Figure 3.
The model with the highest score (AIC or MAPE) is then
determined through the model selection process. The specific
model and its parameters are detailed in Table II.

C. Proposed Algorithm

The ensemble model offers a solution to the limitations
of individual basic predictions by leveraging the interactions
between these models to enhance prediction capabilities [14].
In this study, we introduce the PASEL algorithm, Figure 4,
which selects an optimal subset of base models based on the
characteristics of the data. By doing so, we aim to further
enhance the prediction accuracy of the ensemble model. The
specific steps of the algorithm are outlined in Algorithm 1.

D. Proposed Algorithm

In this algorithm, the list of models utilized for ensemble
learning is denoted as ModelSet, while ModelList represents
the list of all basic models used by the method. It is important

Algorithm 1 A Prediction Algorithm Based on Stacking
Ensemble Learning(PASEL)
Require: Data(T'S), ModelList M = {My, M, ..., M}
Ensure: BestMSet, RuntimePred, BestMScore

1: for each key € activekeylist do

2:  for each modelset € modellist do

3 start {1 — layer — stacking} A

4 Randomly split Data(TS) into k chunks {7°S? };?:1
5: for j=1 to k do
6.
7
8

start {k — fold bagging}
for each model m in M do _
: Training m-model on {7'S™7}
9: Make predictions P’ on T'S?

10: end for

11: end for

12: Choose model M; in M start 2 — layer — stacking
13: Train m model on {7°S”, Y’} and predict Pfina:
14: end stacking

15: Compute StackingMScore= R2

16: if StackingM Score > BestScore then

17: bestscore < StackingM Score

18: BestM Set < ModelSet

19: Pf’inal — Pfinu,l

20: end if

21:  end for

22: end for=0

to note that ModelSet is a subset of ModelList (M odelSet C
Model List). Within the context of the current ModelSet,
”BestMSet” refers to the most effective combination of mod-
els, and "BestMScore” represents the highest achievable model
score.

Firstly, a pre-selected method is employed to select a
model combination from the ModelList, initiating the stacking
integration training process.

Lines 1 to 11 depict the training of all models in the first
layer using k-fold cross-validation, resulting in the generation
of predicted values (Pj) for each model (M), as indicated in
the output.

Lines 12 to 15 demonstrate the second layer of the stacking
integration process. During this stage, the predicted values
from the first layer models are used as features, and the final
ensemble model is trained by combining these features with
the initial ones.

Lines 14 to 18 outline the model selection procedure. The
R2 value is employed to evaluate the ensemble model. If the
score of the currently active model combination surpasses the
score of the best model, the best model combination and best
model score are updated accordingly. Ultimately, the algorithm
outputs the best model combination and the corresponding
forecast.

E. Evaluation Metrics

In this paper, we employ various evaluation metrics to
assess the performance of the demand prediction models.
These metrics include Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), Root-Mean-Squared Error
(RMSE), Accuracy (ACC), Coefficient of Determination (R2),
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TABLE 1
CLASSIFICATION AND FORECASTING METHODS FOR EACH TYPE

Classification

Implication for Forecasting

New

Insufficient data available for reliable statistical forecasting.

No Past 12 Wk Hist

At this point, the statistical forecast stops updating and becomes zero or assumes an end-of-
life profile. These special cases have a zero baseline, and the forecast relies on enrichment.
Intermittent sales products are treated differently, utilizing intermittent classification and a
continuation field.

Intermittent

Forecasting intermittent series pose challenges. The process employs Croton’s Model, which
distinguishes two components of demand: interval and magnitude. It models these components
separately, providing a stable forecast even in periods with no sales.

Trending

Exponential Smoothing models are used for series exhibiting trends. These models differentiate
trends from the base and assign more weight to recent data. They are particularly effective for
short-term forecasting.

Seasonal

Seasonal trends are more accurately identified using monthly data rather than weekly data.
For seasonal series, the process tests Holt-Winters, UCM Decomposition, and Fourier models
to select the best-performing model. Fourier models are used when the data exhibits multiple
seasonality patterns and requires the identification of peaks and troughs.

Promotional

Promotional series utilize a baseline of non-promoted volume, with promotions enriching the
forecast. UCM, ARIMAX, VARMAX, and Machine Learning models are tested to identify the
best-performing model.

Level shift

Holt-Winters, UCM Decomposition, and ARIMA models are tested to detect structural changes
and select the best-performing model. These models are effective in identifying shifts but require
substantial amounts of data.
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TABLE I
MACHINE LEARNING OR TIME SERIES MODELS.

Model Method Used Classification

ARIMA Auto-regressive Integrated Moving Average  Seasonal, Non Seasonal, Other, Short, Low Volume, Retired
ESM(BESTS) Exponential Smoothing Model-Seasonal Seasonal

UCM Unobserved Components Model Seasonal, Non Seasonal, Other, Short, Low Volume, Retired
SIMPLEREG Simple Regression Model Seasonal, Non Seasonal, Other, Short, Low Volume, Retired
AVERAGE Simple Average Seasonal, Non-Seasonal, Other, Short, Low Volume, Retired
IDM Intermittent Demand Model Intermittent

ESM(BESTN) Exponential Smoothing Model-NonSeasonal ~ Other, Short, Low Volume, Retired

and Akaike Information Criterion (AIC). They are defined as

follows: n ; i
MAE: Zi:l ‘yriyp|’ (3)
n
n o yi—y)
MAPE = iz [Ty x 100, 4)
n
1 Dyl —
a0 =1 - W%~ 5)
n =1 yp
n i )2
RMSE _ Zz:l(yr yp) , (6)
n
n AV
R2 _ 1 _ Z;:l(% yp)Q (7)
> i (Y —yp)
AIC = 2K —2In(L), (8)

where ¢! and y; represent the real and predicted values of the
i-th sample, respectively, ¥, is the average of the true values,
K is the number of independent variables used, and L is the
log-likelihood estimate.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

The ETL process relies on two components: (1) a substantial
volume of transaction data generated from daily business
activities, and (2) layers of business domains that aggregate
to form the final analytical base table in a time series format.
In our algorithm, we employ the MapReduce schema, which
utilizes a cluster of virtual machine instances for parallel com-
puting. These instances are allocated to perform transformation

and classification tasks. The objective of the MapReduce
algorithm is to enhance performance and minimize the data
preprocessing time. Figure 5 illustrates the specific process.

In this study, we implement the MapReduce process as a
two-layer framework consisting of Mappers and Reducers.
This framework facilitates the cleaning and preprocessing,
joining, and partitioning of transaction data. The sheer magni-
tude of the data necessitates the utilization of parallel comput-
ing to address real-world business challenges. However, due
to the complexity of business cases, a single-layer MapReduce
job is insufficient for solving large-scale forecasting problems.
By employing multiple rounds of data processing and em-
ploying a combination of mapper and reducer operations, we
can effectively tackle large-scale business problems within an
acceptable running time.

A. Implementation of the Proposed Algorithm

The utilization of MapReduce not only facilitates the prepa-
ration of input data but also enables the resolution of real-
world problems on a large scale. In this work, the PA2LMR
algorithm has been designed by incorporating synchronization.
This algorithm transforms the vast amount of transactional
data into time series data, region by region, and employs
the second-layer MapReduce to perform classification and
generate forecast data. The specific steps of the algorithm are
outlined in Algorithm 2.

In this algorithm, Data TD represents all transaction data
with Identifier Unit (IU), which combines SKU, Location,
and Customer IDs. Each Data entry contains a timestamp
along with corresponding demand quantities. The first-layer
MapReduce sorts the Data by region and transforms it into



Algorithm 2 A Preprocessing Algorithm based on 2-Layer
MapReduce(PA2LMR)

Require: Data(T' D) {Transactional Data by Identifier Unit -IU}
Ensure: Analytical BaseT able(ABT)
: MAPPERI1(RegionID r, IU) {1 Layer Mapper}
: for all recordt € r do
EMIT(record r, count sum)
end for
: REDUCER1(RegionID r, IU) {1 Layer Reducer}
: for all recordt € I1U do
Transform Transaction Data to Time Series Data by Weekly
and Run Classification Algortims on each IU
8: EMIT(dentifier IU, Data TD)
9: end for
10: MAPPER2(Classification ¢, IU) {2 Layer Mapper}
11: for all recordr € c do
12:  EMIT(record r, count sum)
13: end for
14: REDUCER2(Classification c, IU) {2 Layer Reducer}
15: for all recordt € IU do
16:  Run PASEL algorithm on every IU based on Classification.
17:  EMIT(Identifier IU, Data TD)
18: end for=0

AN AN S

a time series format, aggregating quantities on a weekly
basis. The second-layer MapReduce applies a classification
algorithm within each region, categorizing the data into dif-
ferent model categories, and subsequently performs forecast
algorithms based on these classifications.

Initially, transaction data is extracted from the system using
ETL queries. Lines 1 through 4 illustrate the first layer mapper,
which sorts and shuffles all transaction data to the respective
regions. Lines 5 through 9 correspond to the first-layer re-
ducer, which transforms the data into a time series format by
aggregating quantities on a weekly basis. Lines 10 through
13 represent the second-layer mapper process, responsible for
identifying the classification and shuffling the data accord-
ingly. Finally, lines 14 through 18 depict the second-layer
reducer process, which employs the aforementioned PASEL
ensemble models to generate predictions based on the current
classification.

B. Experimental Results and Analysis
1) Data Collection and Experiment Environment

The experimental data remain confidential due to the need to
maintain the anonymity of the private business collection. The
time series history period is collected as indicated in Table III.
The experiment was conducted in an environment consisting of
a cluster of 10 nodes running on cloud VMs with E2 instances
and 128GB memory.

2) Running Time and Performance Evaluation

This MapReducer approach, employed as a data prepro-
cessing strategy, serves to reduce model complexity, harness
the power of parallel computing, and eliminate unnecessary
attributes. The overall processing time, from input data to
output generation, is reduced to 7-8 hours, as shown in
Table IV.

TABLE III
PARAMETER CONFIGURATION.

Parameters value

Level of Time Series History [1,2,3]
Period of History 156
Holdout Periods [0,12,16,20]
Prediction Period 131

TABLE IV
MODEL PERFORMANCE EVALUATION.

Model | R? | RMSE | MAPE | ACC (%)
ARIMA | 0.802 | 91.79 | 61.13 | 7131
ESM BESTS) | 0742 | 57.28 | 31.83 | 80.59
ucM | 0748 | 53.03 | 3223 | 8135
SIMPLEREG | 0.846 | 56.61 | 3351 | 82.37
AVG | 0.857 | 48.67 | 3143 | 8245
IDM | 0.762 | 4571 | 30.03 | 84.37
ESM (BESTS) | 0.742 | 5228 | 31.83 | 80.59
PASEL | 0877 | 3956 | 25.69 | 88.54

To assess the efficacy of the algorithm, a series of extensive
experiments were conducted, varying the number of virtual
machine instances as worker nodes from 3 to 99 and the
number of master nodes from 1 to 10. Initially, the perfor-
mance of each cluster distribution was measured, followed
by an evaluation of the ensemble model. The results of these
experiments are presented in Table IV. These findings reveal
that each model exhibits distinct performance characteristics
across different evaluation metrics. Specifically, while a par-
ticular prediction model may outperform others in terms of
error rate, its accuracy might be comparatively lower. For
instance, referring to Table 4, the Simple Regression model
achieves an accuracy of 82.37% (higher than that of the UCM
model), but its RMSE and MAPE values are 56.61 and 33.51,
respectively, surpassing the error rates of the UCM model.
Moreover, the ensemble model underwent rigorous testing
through a model selection process, wherein it was observed
that the PASEL model achieved enhanced prediction accuracy
(88.54%) while exhibiting lower error rates (39.56/25.69)
compared to individual models.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have introduced an ensemble learning
model for predicting demand in large-scale time series data,
aiming to provide accurate and reliable forecasts for a com-
pany’s products. Our approach involves an ETL process that
integrates data from diverse sources into a centralized data
lake on a cloud server, followed by the implementation of
a parallel and distributed two-layer MapReduce algorithm on
a cluster to aggregate transaction data into an abstract base
table suitable for time series forecasting. Furthermore, the al-



gorithm automatically classifies time series into categories for
utilization by the ensemble learning model. By leveraging the
strengths of individual models, the ensemble model enhances
overall performance and reliability, with the stacking method
employed as the “meta-model” at a higher level, capable of
capturing a wider range of patterns in large-scale data and
generating robust forecasts covering major patterns shown in
Figure 6.

Our research findings indicate that the proposed method,
successfully implemented in a cloud-based business environ-
ment, delivers accurate demand predictions and facilitates their
effective execution. Through a comparative analysis of various
time series analyses and machine learning techniques, we have
demonstrated the advantages of our framework.

Looking ahead, future research endeavors aim to further
enhance the accuracy of the meta-models in the ensemble
learning approach. This will involve exploring a broader range
of base models to diversify the ensemble and improve its
performance. Additionally, we are interested in investigating
novel ensemble methodologies, extending stacking to boosting
techniques, and incorporating penalty, generalization, and reg-
ularization methods into the model-building process to further
enhance forecasting performance. These investigations hold
promise for advancing the field and refining the proposed
approach.
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