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Abstract—Machine learning techniques have gained significant actionable steps involving all stakeholders. Enhancing demand
traction in supply chain forecasting, driven by the increasing forecasting yields a multiplier effect as it permeates the IBP
availability of data assets. These techniques offer Opportun't'esdprocess, influencing nearly every component within the supply

to optimize management processes, reduce operational costs, an hain. Even minor enhancements in for tin biliti
enhance decision-making for enterprise success. However, convencNain. =ve or enhancements In forecasting capabilities

tional statistical approaches dominating time series forecasting, €&n exert significant impact on revenue, costs, profitability,
such as the Autoregressive-moving-average model (ARMA), dy- customer satisfaction, and working capital, surpassing the

namic regression, and unobserved component models (UCMs), influence of other supply-oriented or non-supply-oriented el-
suffer from limitations in model accuracy and performance. ements. IBP, in general, entails managing vast quantities of

They struggle to handle batch processing, large-scale big data, . L
uncertainty-induced disruptions, and the synchronization of de- disconnected data, rendering it one of the most structurally

mand and supply scenarios. To address these challenges, weOmMplex processes in business operations. By leveraging clas-
propose a class of ensemble techniques that combine neuralsification and segmentation techniques, the efficiency of this

networks with baseline models. Firstly, we conduct classification process can be augmented, leading to cost reduction, expedited
and segmentation by leveraging feature engineering on signal e gictions, and informed decision-making. Consequently, the

components, such as spikes and anomalies as outlier skewsSu lv chain manacgement team can allocate more time to
to capture the complexity of combined scenarios in categorical pply g

data hierarchies and identify patterns for ensemble forecasting. Value-adding activities.
Subsequently, we employ an ensemble model equipped with time
series pattern sensors to automatically discern signal components,
e”%‘.’mpas.smg dsea_sqr_lality\,Npromc;tions,htrendsf, and i”ter][“it_ter?t Supply chain forecasting plays a critical role in enabling
ggm';%%qyf‘uiee d arf]t(')\ggfsc' at e‘; ;\i’:sf’a;% gu‘?egg&igﬁe é’nsee'%btl eorgani_zations to optimize thei_r managemer_lt_processes, _reduce
modeling approaches exhibit substantial improvements in accu- OPerational costs, and make informed decisions for achieving
racy compared to individual baseline models and other univariate success in the dynamic business landscape. With the increasing
time series algorithms. availability of data assets, machine learning techniques have
Index Terms—EnsempIe models, time series forgcasting, [arge- emerged as a powerful tool in supply chain forecasting.
scale data, supply chain, neural networks, stacking techniques Tage techniques offer promising opportunities to overcome
the limitations of conventional statistical approaches, such as
the Autoregressive-moving-average model (ARMA), dynamic
regression, and unobserved component models (UCMs). While
The advent of the digitalization revolution has ushered ihese traditional methods have been widely used, they often
a new era for enterprises, propelling them towards Indufal short in terms of model accuracy and performance, partic-
try 4.0 [1]. This transformation has permeated all facets of thgarly when confronted with challenges like batch processing,
supply chain [2], encompassing procurement, manufacturingandling large-scale big data, managing uncertainty-induced
engineering, and customer management. Against the badleruptions, and effectively synchronizing demand and supply
drop of complex decision-making scenarios, encompassiggenarios.
considerations of globalization versus localization [3], rapidly To address the aforementioned challenges, we propose
evolving technologies, and increasingly demanding customessnovel class of ensemble techniques that combine neural
demand forecasting [4] within the corporate supply chain playgtworks with baseline models. Our approach leverages the
a pivotal role in satisfying customer requirements and gainip@wer of machine learning to enhance supply chain forecasting
a competitive edge. accuracy and performance. The first step involves conducting
Demand forecasting represents the primary source of valassification and segmentation by employing feature engineer-
ance and uncertainty in integrated business planning (IBP)ing on signal components. This enables us to capture the inher-
process integral to strategic management systems. Its oveemt complexity of combined scenarios present in categorical
ching aim is to identify improvement opportunities and defingata hierarchies and identify relevant patterns for ensemble

A. Ensemble Models vs Traditional Time Series Forecasting

I. INTRODUCTION



forecasting. By effectively analyzing and distinguishing signad not affected by lagged input values, the model is commonly
components, including spikes, anomalies, and outlier skewsferred to as a regression with time series errors. Conversely,
we can gain deeper insights into the underlying patterns aifidhe term ., varies based on lagged input values, the model
dynamics of the supply chain. is often referred to as a dynamic regression model.
Furthermore, we employ an ensemble model that isThis research focuses on a specific aspect of time series
equipped with specialized time series pattern sensors. Thesedeling and does not aim to address the broader issue of a
sensors enable the automatic differentiation of various sigristhe series model with stochastic inputs, although interven-
components, encompassing seasonality, promotions, trertis)s can be considered as deterministic inputs. In the context
and intermittent or discontinued activities. By utilizing thesef this study, we categorize the inputs into two types based
sensors, we can effectively capture and utilize the valuable m their influence on the time series. Inputs that exert a static
formation embedded in the time series data, thereby enhancinjuence are referred to as regressor variables, while those
the accuracy and reliability of the forecasting process. with a dynamic influence are termed dynamic regression vari-
To assess the effectiveness of our proposed ensemble mafales or transfer function inputs. Furthermore, it is important
eling approaches, we evaluate their performance against eighinote that the time series model may incorporate various
commonly-used model categories. The results demonstransformations, such as logarithmic, square root, logistic, or
substantial improvements in accuracy when compared to Bex-Cox transformations, to enhance its representation and
dividual baseline models and other univariate time seriesalysis.
algorithms. These findings underscore the potential of Olr
ensemble techniques in revolutionizing supply chain forecast-
ing and enabling organizations to make more accurate andn recent years, the use of big data technologies centered
informed decisions, ultimately leading to enhanced operatior&pund parallel computing has gained significant attention
efficiency and competitiveness. from enterprises across various industries for processing large-
Traditional time series forecasting models utilize a distupcale forecasting data. Big data, as defined by Gartner, refers
bance filter and potentially incorporate one or more inputé information assets characterized by high volume, velocity,
to characterize the behavior of a time series based on &&d variety, requiring innovative and cost-effective methods
lagged values. The first-order autoregressive (AR) model,0hinformation processing to gain valuable insights and facili-
fundamental time series model, offers a simple explanationt@te decision-making [5]. This demand for analyzing massive
time series behavior using initial values. The model can Ignounts of data has paved the way for a digital revolution in
represented as: demand forecasting.
Y = dyi_1 + ay + ¢, (1) To address the challenges associated with big data forecast-
ing, we propose an extract, transform, and load (ETL) process
wherey, denotes the time series data at index represents coupled with a MapReduce/Hadoop solution that leverages
the first-order autoregressive parametersignifies the ran- time series signal components to differentiate between various
domized factor with zero mean and standardized Vari@ﬁce factors such as |eve|, trend, Seasona"ty, Cyc|e, exogenous,
andc represents a constant term. It is important to notedhat gng irregular components. Our approach begins by modeling
anda, are uncorrelated for any# ¢, indicating a white noise c|assifications and segmentations of large-scale data as an
process. When the magnitude ofis less than one, the seriesaytomated ETL dataset generator, relying on the component
exhibits stationarity. In the case of a stationary time seriggatures anticipated by traditional statistical models prior to the
previous values exert an exponentially diminishing influenggaining and validation processes. Additionally, we introduce
on the current value. The lags associated with a time serig$ ensemble model that enables more efficient time series
model can be of considerable complexity. forecasting while maintaining a high level of accuracy com-
In time series analysis, it is common for one or morgared to baseline models and other time series approaches.
deterministic and/or stochastic input variables, referred to gforeover, the dynamic ETL process acts as a labeling function
regressor, exogenous, or explanatory variables, to have fgnthe supervised machine learning model and as a weight
influence on the observed time series. This influence can eitl&afegorizaﬁon function for the proposed ensemble |earning
be static or dynamic, meaning it may remain constant Ovgpproach based on stacking.

time or change over time. To gain a deeper understanding ofrhe main technical contributions of this paper are summa-
these inputs and their impact, a model with a time-varyingzed as follows:

Big Data and ETL Technologies

Y = i + H(B)ay, o) of ensemble learning techniques and bigl dat_a processing
systems for large-scale demand forecasting in the supply

where 1 represents the mean of the seri&corresponds to chain domain.
the backshift operator (such th8y, = y;—_1), ¥(B) denotes  « We utilize a set of time series components to represent the
the disturbance filter of either limited or infinite order, and features of supervised machine learning labels extracted

is a time-varying constant that describes the influence of the from the data source. The ETL process and MapReduce
inputs on the time series at each point in time. If the term solution in this study incorporate various category inputs



that partially align with existing traditional time seriescombinations is still a topic of ongoing research and will be
models. This includes discovering distinctive short-ternaddressed in future studies.
long-term, seasonal, low-volume, retired, and intermit- The concept of forecasting based on a collection of time
tent patterns, as well as identifying groups of betteseries models can be likened to the bagging strategy used in
performing models for each distinctive parameter. classification and regression. However, it is crucial to establish
« To further validate our approach, we create a mixed eand test the specific requirements that should be met by
semble model utilizing these time series parameters. Timelividual models aggregated into a set, analogous to the
experimental results demonstrate that our proposed eonstraints imposed on weak classifiers.
semble learning outperforms single-agent learning, with By leveraging voting technigues and combining ARIMA
the integrated ensemble model achieving the highaabdels, this study aims to enhance the accuracy and relia-
classification accuracy among all compared models. bility of time series forecasting. The subsequent sections will
The remainder of this study is organized as follows. Sedelve into the experimental setup, methodologies, and results,
tion Il provides an overview of related work. Sections Ilbroviding valuable insights into the field of time series analysis
introduces the prediction framework and the method for imnd forecasting.
telligent integration, respectively. Section IV describes tIE
MapReduce-based data processing method and the propose
ensemble learning techniques. The experimental setup, result®agging techniques have gained prominence in time series
and analysis are presented in Section V. Finally, Section Ydrecasting due to their ability to improve accuracy across a
concludes our work and outlines potential future directionswide range of applications.
Fotios [9] proposed the Simple Combination of Univariate
Models (SCUM) technique for generating point predictions
A. ARIMA Models Trained with Voting Techniques and prediction intervals in the M4-competition entry. SCUM

Autoregressive integrated moving average (ARIMA) modeRpmbines the point forecasts and prediction intervals from four
have been widely used for time series forecasting over thdels, namely, Exponential Smoothing, Complex Exponen-
past three decades [6]. These models incorporate time sefi@sSmoothing, Automatic Autoregressive Integrated Moving
integration to achieve stationarity and offer a diverse rangwerage, and Dynamic Optimized Theta, using the median
of prediction intervals. However, evaluating and selectingombination approach. This method performed well in the M4
appropriate ARIMA models can be challenging due to the@ompetition, ranking 6th for point predictions and prediction
complexity, especially in the context of time series forecastingjitervals, and 2nd and 3rd for point forecasts of weekly and

A voting technique based on traditional time series modeigiarterly data, respectively.
has been employed to analyze the monthly wage index ofMatheus [10] introduced an efficient bootstrap stacking
Russian macroeconomic statistics [7]. In this approach, 2/3tethnique applied to the Wind energy project to enhance
the training set is utilized to construct ARIMA models and fivifs economic and environmental benefits. Forecasting time
"good” models are selected for the subsequent stage. Eqseilies data for wind energy generation is challenging due
weights are assigned to their votes, and the voting approdohthe complex interplay of meteorological and demographic
is applied using the remaining 1/3 of the training set. Eadhctors. Matheus employed an ensemble learning model that
chosen model generates a one-month projection, and thegorporates both bagging and stacking techniques to improve
predictions are compared against the actual data. The mogledri-term wind energy generation evaluations. The ensemble
with the most accurate prediction receives a higher weiginodel integrates samples using arithmetic and weighted aver-
while the weights of other models are reduced, ensuring tlege values, with weights determined through multi-objective
the combined weight remains equal to one. It is important tptimization using a non-dominated sorting genetic algorithm
note that the weights should not fall below zero during thigf version Il. Experimental results demonstrated that the
process [8]. proposed ensemble learning model outperformed single fore-

Initially, all models are considered equal in terms of theitasting models, including stacking, machine learning, artificial
prediction quality. However, as the voting evaluation proieural networks, and statistical models, resulting in reduced
gresses, the weight of the model producing the most accurateor rates for out-of-sample forecasting. These findings high-
forecasts is increased, while the weights of other models dight the effectiveness of integrating ensemble techniques for
decreased. This dynamic weight adjustment mechanism alloaezurate forecasting in renewable energy.
superior models to be identified and rewarded. The approactEgrioglu [11] introduced a novel bootstrapped hybrid ar-
of combining models has demonstrated improved predictitificial neural network (ANN) for prediction. This approach
quality in these studies, providing a valuable framework farilizes the residual bootstrap technique to provide input
evaluating models and their predictions. significance testing and hypothesis testing for linearity and

Additionally, further investigation is needed to explore thaon-linearity. The technique employs bagging to generate
prediction intervals of mixed models. Although the combingsredictions and outperforms other prominent neural networks
tion of models often leads to comparable or even superiand models in terms of prediction accuracy. Moreover, the
forecasts, the narrowing of prediction intervals for modeluggested method exhibits improved stability and robustness

gagging for Time Series Forecasting

Il. RELATED WORK
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Fig. 1. Flow chart of classification.

by being less affected by initial random weights compared tmn of product and customer where sales orders should ship
previous neural networks. from. This information is only available in the database for
By leveraging bagging techniques in time series forecaslistribution sales networks. Warehouse and export distribution
ing, researchers have achieved significant improvementsnetworks are derived based on historical shipment data in
prediction accuracy across various domains. The subsequéet database and then maintained as location realignment
sections of this paper will explore the experimental setupgstructions when changes from the default are part of the
methodologies, and results, providing valuable insights for thgcation realignment process governed by the management
application of bagging in time series forecasting. team. The supply chain sends inventory to the locations where
customer services send sales orders. One of the goals of the
demand planning process is to send forecasts to the exact
location where orders will be sent so that when the orders are
Large-scale demand forecasting is a technique used to foreseived, there is inventory to fill them. This is accomplished
cast the future consumption of electricity, natural gas, or othiy taking the actual order on the shipment history, aligning
fuels in an energy market. Large-scale demand forecastingti¢o the default ship-from location in the master data, and
one of the most important tools for planning and managirapplying location realignments to history and forecast based
supply systems for power plants, transmission lines, distan the business scenario.
bution systems, and end USErs. Large—sca!e d.e m."’?”d forec/a.StTQfeature Detector and Weak Learner Classifier
are also useful for evaluating the economic viability of new
power plant projects. For example, the largest single-use casén this work, we first focus on feature engineering and weak
for large-scale demand forecasting is predicting power plamodel classification. Therefore, we design an ETL MapReduce
load factors (the percentage of time that a generator operatedyorithm to extract large-scale data and classify all data into
Load factor forecasts are essential to plan how much fudifferent training datasets for weak models based on the crite-
is needed to meet peak demands during periods when thegein time. Each time series has only one classification. Given
may not be enough generation available from other sourc#® classification and the series level in the data structure, the
such as wind or solar farms. Power plants can also benefitsemble algorithm selects the model that can handle the type
from this information by adjusting their operating schedulesf series in the most efficient way. If the proposed algorithm
based on expected load conditions. Let us consider a scenageds to choose between several models for a time series, it
where a plant will operate longer than usual during wintéands on the simplest one that requires the least running time.
months because it has been forecasted that loads will increkigure 1 illustrates the Decision Tree process that this feature
due to cold weather. In that case, we can adjust the schediigector uses to classify each data time series. The process is
to operate more hours per day during those colder monttarried out automatically, and the classification for the series
and fewer hours per day in warmer months without extia stored in a column in the control table at the specific level
generation capacity. This allows us to maximize the amount of the time series with labels shown in Figure 2.
money generated from each hour of operation without havingThe classification for each series is automatically performed,
excessive generating capacity running around waiting in thed the resulting classification is stored in a specific level
standby mode, and get ready to ramp up production whealumn of the control table. The classification components of
needed by customers who have requested it through thibie time series include the following:
utility company’s call center or online portal system (e.g., PIM « Trend represents the long-term pattern of a series’
Interconnection). means, which consists of a level and one or more move-
The ETL process extracts data from the master data in the ment characteristics.
enterprise relational database, which defines for each combinae Seasonality refers to the predicted deviation of series

I11. TIME SERIES AND DEPLOYMENT FRAMEWORK IN
LARGE-SCALE DATASET



patterns from the trend component. These deviatioimsFigure 2, illustrating three key modules: data preprocessing
follow a periodic pattern, such as 52 weeks for thand feature selection, stacking ensemble training, and model
weekly series or 12 months for the monthly series. Theelection. These modules handle crucial tasks such as pre-
nature of these departures from the series can be smopthcessing the data, training the basic ensemble model, and
(sinusoidal) or non-smooth. selecting the final predictive model based on its score. The
« In contrast to the seasonal component, dh@e compo- prediction algorithm is employed to estimate the running time
nent represents a regular, recurring cycle that does mftthe CSM application. The monitor collects parameters,
have a fixed duration. For example, one cycle may lasthich serve as input for the ensemble algorithm, and the
20 months, while the next cycle may last 25 months. algorithm’s output includes the running time of the simulation
« FExogenous effects are external factors that cause fluapplication and the CPU cores allocated to it.
tuations in the series but are not considered part of tl% E .
S . Ensemble Model Predictor
series itself. These effects can be related to or caused by
the values of another series. They are sometimes referred he resource scheduler and simulation application scheduler
to as explanatory effects, and their relationship with thare responsible for reallocating resources and redistributing
series can be concurrent or delayed. Additionally, e@ntities within the simulation application to achieve load
"event” refers to a form of external effect, where thdéalance. Specifically, when the predictor forecasts the shortest
occurrence or non-occurrence of the event can lead gnning time for the simulation application, the resource
temporary, semi-permanent, or permanent alterations Sgheduler reallocates optimal resources for the application’s
the series’ evolution. execution. Subsequently, the simulation application scheduler
« Finally, the irregular component represents the residemploys a comprehensive approach that minimizes synchro-
ual variation that remains after accounting for all othetization overhead among simulation entities while ensuring
impacts and components. It is characterized by unpread balancing. It redistributes the application across specified
dictable fluctuations. Although white noise can serve dwdes for parallel acceleration.
an irregular component, it is not necessary. The residuals

may contain local, forecastable patterns, such as autocor- -
. X . ' -
relation and moving averages. Machine Learning | promotion |

Multipl:
Fourier
Croston’s
ARIMAX, VARMAX

Fig. 3. Forecasting model family based on classification type.

IV. PREDICTION ALGORITHM BASED ON STACKING
ENSEMBLE LEARNING

The combination of multiple models’ predictions has been
widely acknowledged as a powerful approach that outper-
forms single models and effectively reduces prediction result
variance [12]. Ensemble learning aims to create a stronger
predictor by integrating individual prediction results obtained
Fig. 2. Classification design for time series units. from various learning methods. In this paper, we propose
a prediction method based on stacking ensemble learning

B. ETL Training Dataset Generator with MapReduce DesigwASEL)’ as lllustrated in Figure 6.

This section presents the proposed prediction model, whi’éh Dataset Generation
leverages the stacking integration method to enhance predicThe business data is collected daily and preprocessed before
tion performance. The architecture of the method is depictbding stored in the time series database as feature data. For




Algorithm 1 A Prediction Algorithm Based on Stacking

g Dan Ensemble Learning@SEL)
v Require: Data(T'S), ModelList M = {My, Ms, ..., My}
Data feature sclection Ensure: BestMSet, RuntimePred, BestMScore

1: for eachkey € activekeylist do

v 2:  for eachmodelset € modellist do
»  Modsl selection 3: start {1 — layer — stacking}
4: Randomly split Data(TS) into k chunks's7}%_,
5: for j=1 to k do
( Kfold crossvalidation | 6: start {k — fold bagging}
‘ | ’7 7 for each model m in Mdo
— 8: Training m-model on{T'S™7}
[ Troining | o: Make predictionsP’ on T'S?
frist layer 10: end for
acking = 1L end for
modell \ modd2 | m‘e‘n‘ El 12: Choose modelM; in M start 2 — layer — stacking
| Predicions ® 13: Train m model on{7’S’, Y’} and predictPy;yai
: ¥ 14: end stacking
@ G:P 15: Compute StackingMScore= R2
o 16: if StackingM Score > BestScore then
Training 17: bestscore « StackingM Score
Second- Model ., « 18: BestMSet — ModelSet
stacking 19: Pf’inal — Pfinu,l
20: end if
21:  end for
22: end for=0

Model scoring

Fig. 4. A schematic diagram of the PASEL prediction algorithm.
ModelList). Within the context of the current ModelSet,
"BestMSet” refers to the most effective combination of mod-

our prediction approach, we consider time series parametg[s and "BestMScore” represents the highest achievable model
that contribute to the prediction performance. The specifiggre.

parameters used are outlined in Table |. Firstly, a pre-selected method is employed to select a

B. Selection of Prediction Model model combination from the ModelList, initiating the stacking

Meeting the resource requirements for simulation accurat3fegration training process.
with a single machine learning model can be challenging. ToLines 1 to 11 depict the training of all models in the first
improve performance, the ensemble model combines multig@yer using k-fold cross-validation, resulting in the generation
basic models [13]. However, not all basic models contribug predicted values (Pj) for each model (M), as indicated in
positively to the integration model’s performance. Therefor¢he output.
a separate pre-run is conducted to pre-select machine learningines 12 to 15 demonstrate the second layer of the stacking
prediction models for each classification shown in Figure thtegration process. During this stage, the predicted values
The model with the highest score (AIC or MAPE) is therfrom the first layer models are used as features, and the final
determined through the model selection process. The spec#fitsemble model is trained by combining these features with
model and its parameters are detailed in Table II. the initial ones.

C. Proposed Algorithm Lines 14 to 18 outline the model selection procedure. The
R2 value is employed to evaluate the ensemble model. If the
"Score of the currently active model combination surpasses the

A >racliong:ore of the best model, the best model combination and best
between these models to enhance prediction capabilities [

In this study, we introduce the PASEL algorithm, as show del score are updated accordingly. Ultimately, the algorithm

Butputs the best model combination and the correspondin
in Figure 4, which selects an optimal subset of base mod?(g?:(:uast inat ponding

based on the characteristics of the data. By doing so, we aim

to further enhance the prediction accuracy of the ensemipe £\ 51uation Metrics

model. The specific steps of the algorithm are outlined in

Algorithm 1. In this paper, we employ various evaluation metrics to
In this algorithm, the list of models utilized for ensemblassess the performance of the demand prediction models.

learning is denoted as ModelSet, while ModelList represerntsiese metrics include Mean Absolute Error (MAE), Mean Ab-

the list of all basic models used by the method. It is importasblute Percentage Error (MAPE), Root-Mean-Squared Error

to note that ModelSet is a subset of ModelLi8t ¢delSet C (RMSE), Accuracy (ACC), Coefficient of Determination (R2),

The ensemble model offers a solution to the limitatio
of individual basic predictions by leveraging the interactio
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TABLE |
CLASSIFICATION AND FORECASTINGMETHODS FOREACH TYPE

Classification

Implication for érecasting

New

Insufficient data available for reliable statistifatecasting.

No Past 12 WK Hist

At this point, the statistical forecast stops updating and becomes zero or assumes an end-of-
life profile. These special cases have a zero baseline, and the forecast relies on enrichment.
Intermittent sales products are treated differently, utilizing intermittent classification and a
continuationfield.

Intermittent

Forecasting intermittent series pose challenges. The process employs Croton’s Model, which
distinguishes two components of demand: interval and magnitude. It models these components
separately, providing a stable forecast even in periods witkates.

Transactional
Data

By Orders

Identifier
Unit (1U):
SKU/Locatio
n/Customer

Trending Exponential Smoothing models are used for series exhibiting trends. These models differentiate
trends from the base and assign more weight to recent data. They are particularly effective for
short-termforecasting.

Seasonal Seasonal trends are more accurately identified using monthly data rather than weekly data.
For seasonal series, the process tests Holt-Winters, UCM Decomposition, and Fourier models
to select the best-performing model. Fourier models are used when the data exhibits multiple
seasonality patterns and requires the identification of peaksranghs.

Promotional Promotional series utilize a baseline of non-promoted volume, with promotions enriching the
forecast. UCM, ARIMAX, VARMAX, and Machine Learning models are tested to identify the
best-performingmodel.

Level shift Holt-Winters, UCM Decomposition, and ARIMA models are tested to detect structural changes
and select the best-performing model. These models are effective in identifying shifts but require
substantial amounts afata.

Everyday This scenario presents the best case for forecast accuracy, allowing the process to test multiple
models and select the best-performing one. The process considers Smoothing models, UCM
Decomposition, ARIMA, and VARMAX models foselection.
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Fig. 5. A schematic diagram of the two-layer MapReduce algorithm (PA2LMR).
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TABLE I
MACHINE LEARNING OR TIME SERIES MODELS

Model Method Used Classification

ARIMA Auto-regressive Integrated Moving Average  Seasonal, Non Seasonal, Other, Short, Low \VBletineg
ESM(BESTS)  Exponential Smoothing Model-Seasonal Seasonal

UCM Unobserved Components Model Seasonal, Non Seasonal, Other, Short, Low \Bletinegl
SIMPLEREG Simple Regression Model Seasonal, Non Seasonal, Other, Short, Low VBletined
AVERAGE Simple Average Seasonal, Non-Seasonal, Other, Short, Low VoRetged
IDM Intermittent Demand Model Intermittent

ESM(BESTN)  Exponential Smoothing Model-NonSeasonal  Other, Short, Low VolReiired

and Akaike Information Criterion (AIC), defined as follows: algorithm is to enhance performance and minimize the data

Sl — v preprocessing time. Figure 5 illustrates the specific process.
MAE = == _“P 3) In this study, we implement the MapReduce process as a
71 ) two-layer framework consisting of Mappers and Reducers.
S |y1"‘iy§| This framework facilitates the cleaning and preprocessing,
MAPE = —/— % %100, (4) joining, and partitioning of transaction data. The sheer magni-
" , _ tude of the data necessitates the utilization of parallel comput-
ACC = 1 100% i: [Yr — Yy ing to address real-world business challenges. However, due
=1- £ 5) . . .
~ oy to the complexity of business cases, a single-layer MapReduce
job is insufficient for solving large-scale forecasting problems.
S (v _y;‘))2 By gmploying r_nult_iple rounds of data processing apd em-
RMSE = B (6) ploying a combination of mapper and reducer operations, we
_ , can effectively tackle large-scale business problems within an
R Z?:dyj - y};)Q’ @ acceptable running time.
i (' = yp)? A. Implementation of the Proposed Algorithm
AIC = 2K —2in(L), (8)  The utilization of MapReduce not only facilitates the prepa-

whereyi andy;', represent the real and predicted values of tHation of input data but also enables _the resolution of real-
ith sample, respectively; is the average of the true valuesWorld problems on a large scale. In this work, the PA2LMR

K is the number of independent variables used, Arid the algorithm has been designed by incorporating synchronization.
log-likelihood estimate. This algorithm transforms the vast amount of transactional

data into time series data, region by region, and employs

the second-layer MapReduce to perform classification and
The ETL process relies on two components: (1) a substani@gnerate forecast data. The specific steps of the algorithm are

volume of transaction data generated from daily businegstlined in Algorithm 2.

activities, and (2) layers of business domains that aggregatén this algorithm, Data TD represents all transaction data

to form the final analytical base table in a time series formatith Identifier Unit (IU), which combines SKU, Location,

In our algorithm, we employ the MapReduce schema, whigmd Customer IDs. Each Data entry contains a timestamp

utilizes a cluster of virtual machine instances for parallel conalong with corresponding demand quantities. The first-layer

puting. These instances are allocated to perform transformatiddapReduce sorts the Data by region and transforms it into

and classification tasks. The objective of the MapRedueetime series format, aggregating quantities on a weekly

V. IMPLEMENTATION AND PERFORMANCEEVALUATION



Algorithm 2 A Preprocessing Algorithm based on 2-Layer
MapReduce(R2LMR)
Require: Data(T D) {Transactional Data by Identifier Unit -[U

TABLE Ill
PARAMETER CONFIGURATION.

Ensure: Analytical BaseTable(ABT) Parameters alue

1: MAPPER1(RegionID r, IU{1 Layer Mappef Level of Time Series History [1,2,3]

2: for all recordt € r do Period of Histor 156

3:  EMIT(record r, count sum) y

4: end for Holdout Periods [0,12,16,20]
5: REDUCERZ1(RegionID r, IU{1 Layer Reducér Prediction Period 131

6: for all recordt € IU do

7:  Transform Transaction Data to Time Series Data by Weekly

and Run Classification Algortims on each U
8:  EMIT(Identifier IU, Data TD)
9: end for

TABLE IV
MODEL PERFORMANCE EVALUATION

10: MAPPER2(Classification c, IU]2 Layer Mappe} Model | R2 | RMSE | MAPE | ACC (%)
11: for all recordr € ¢ do
12:  EMIT(record r, count sum) ARIMA | 0802 | 9179 | 61.13 | 7131
13: end for o ESMBESTS) | 0.742 | 57.28 | 31.83 | 80.59
14: REDUCERZ2(Classification ¢, IUJ2 Layer Reducer
15: for all recordt € IU do UCM \ 0.748 \ 53.03 \ 32.23 \ 81.35
16:  Run PASEL algorithm on every IU based on Classification. SIMPLEREG | 0.846 | 56.61 | 3351 | 82.37
175 EMIT_(Identlfler IU, Data TD) AVG | 0857 | 48.67 | 3143 | 8245
18: end for=0
IDM | 0762 | 45.71 | 30.03 | 84.37
ESM(BESTS) | 0.742 | 52.28 | 31.83 | 80.59
basis. The second-layer MapReduce applies a classification PASEL | 0.877 | 39.56 | 25.69 | 88.54

algorithm within each region, categorizing the data into dif-
ferent model categories, and subsequently performs forecast
algorithms based on these classifications. To assess the efficacy of the algorithm, a series of extensive
Initially, transaction data is extracted from the system usirexperiments were conducted, varying the number of virtual
ETL queries. Lines 1 through 4 illustrate the first layer mappemnachine instances as worker nodes from 3 to 99 and the
which sorts and shuffles all transaction data to the respectivember of master nodes from 1 to 10. Initially, the perfor-
regions. Lines 5 through 9 correspond to the first-layer resance of each cluster distribution was measured, followed
ducer, which transforms the data into a time series format by an evaluation of the ensemble model. The results of these
aggregating quantities on a weekly basis. Lines 10 througkperiments are presented in Table IV. These findings reveal
13 represent the second-layer mapper process, responsiblgifat each model exhibits distinct performance characteristics
identifying the classification and shuffling the data accordcross different evaluation metrics. Specifically, while a par-
ingly. Finally, lines 14 through 18 depict the second-laydicular prediction model may outperform others in terms of
reducer process, which employs the aforementioned PASELror rate, its accuracy might be comparatively lower. For
ensemble models to generate predictions based on the curiestance, referring to Table 4, the Simple Regression model
classification. achieves an accuracy of 82.37% (higher than that of the UCM
model), but its RMSE and MAPE values are 56.61 and 33.51,
respectively, surpassing the error rates of the UCM model.
Moreover, the ensemble model underwent rigorous testing
through a model selection process, wherein it was observed
The experimental data remain confidential due to the needgt the PASEL model achieved enhanced prediction accuracy
maintain the anonymity of the private business collection. Thgg.54%) while exhibiting lower error rates (39.56/25.69)
time series history period is collected as indicated in Table Idompared to individual models.
The experiment was conducted in an environment consisting of
a cluster of 10 nodes running on cloud VMs with E2 instances
and 128GB memory.

B. Experimental Results and Analysis

1) Data Collection and Experiment Environment

VI. CONCLUSIONS ANDFUTURE WORK

In this study, we have introduced an ensemble learning
model for predicting demand in large-scale time series data,
aiming to provide accurate and reliable forecasts for a com-

This MapReducer approach, employed as a data preppany’s products. Our approach involves an ETL process that
cessing strategy, serves to reduce model complexity, harnggegrates data from diverse sources into a centralized data
the power of parallel computing, and eliminate unnecessdake on a cloud server, followed by the implementation of
attributes. The overall processing time, from input data @ parallel and distributed two-layer MapReduce algorithm on
output generation, is reduced to 7-8 hours, as shown ancluster to aggregate transaction data into an abstract base
Table IV. table suitable for time series forecasting. Furthermore, the al-

2) Running Time and Performance Evaluation



gorithm automatically classifies time series into categories for
utilization by the ensemble learning model. By leveraging the
strengths of individual models, the ensemble model enhances
overall performance and reliability, with the stacking method
employed as the "meta-model” at a higher level, capable of
capturing a wider range of patterns in large-scale data and
generating robust forecasts covering major patterns shown in
Figure 6.

Our research findings indicate that the proposed method,
successfully implemented in a cloud-based business environ-
ment, delivers accurate demand predictions and facilitates their
effective execution. Through a comparative analysis of various
time series analyses and machine learning techniques, we have
demonstrated the advantages of our framework.

Looking ahead, future research endeavors aim to further
enhance the accuracy of the meta-models in the ensemble
learning approach. This will involve exploring a broader range
of base models to diversify the ensemble and improve its
performance. Additionally, we are interested in investigating
novel ensemble methodologies, extending stacking to boosting
techniques, and incorporating penalty, generalization, and reg-
ularization methods into the model-building process to further
enhance forecasting performance. These investigations hold
promise for advancing the field and refining the proposed
approach.
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